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ARTICLE INFO ABSTRACT

Keywords: We present in the form of a catalogue the cosmological perturbations within the Bahamonde-Dialektopoulos—
Gauge-invariant Levi Said (BDLS) theory, which serves as the teleparallel counterpart of Horndeski gravity. To understand
Teleparallel gravity structure formation in cosmological models, it is essential to study both the background and perturbative

Cosmological perturbations
Ghost and Laplacian instabilities
Teleparallel Horndeski

aspects of their cosmology. While extensive analysis of both Horndeski gravity and its teleparallel analog
exists in the literature, a quantitative understanding requires a detailed examination of their cosmological
perturbations. We review here all the different gauges for the scalar, vector and tensor perturbations of a
cosmological background up to second order and we hope this will help people who work with observations,
to incorporate it in existing codes.

1. Introduction

For several decades, the ACDM model understood to be the best way to unify cosmological observations at different scales as well as to accurately
describe astrophysical phenomena [1,2]. For this setting, the cosmological constant (A) drives a late-time accelerated expansion [3,4] while
gravitational interactions are expressed through general relativity (GR) whereas cold dark matter (CDM) plays a key role in the primordial formation
of the seeds of large-scale structure formation in the early Universe and as a stabilizing agent in galactic structures in the late-Universe [5,6]. The
ACDM model poses many foundational questions such as the fine-tuning of the cosmological constant [7], but many others. Putting aside these
important concerns, the concordance model description of the Universe is increasingly coming into tension when observational surveys from the
early and late Universe are contrasted [8-11]. Simultaneously, the prospect of direct observations of CDM appear to be less probably as further
measurements continue not report any direct detections [12,13].

A large spectrum of competing modifications to the ACDM model have been proposed in the literature together with the search for different
physical phenomena that may resolve the most pressing open challenges to the concordance model. The vast battery of alterations of the
concordance model include new proposals for the behaviour of CDM [14-17], adding dynamical features to dark energy [2,18-20], as well as
extensions to the GR description of gravity [21-26], among many others. By and large, these models consist of additional layers of complexity on
top of the baseline ACDM model. Another approach is to reconsider the foundations of ACDM. Teleparallel gravity (TG) is grounded in the exchange
of the curvature associated with the Levi-Civita connection with geometric torsion as the description of gravitational interactions [23,27,28]. This
has some advantages in foundational aspects of the theory such as having a well defined gravitational energy momentum tensor [29], among
others, and may also offer a vehicle to meet the growing body of observational challenges.

The novel architecture of teleparallel gravity is curvature-free, satisfies metricity, and features a formulation which is dynamically equivalent
to GR called the teleparallel equivalent of general relativity (TEGR) [30,31]. TEGR differs from GR by a boundary term which plays an important

* Corresponding author.
E-mail addresses: ahmedov@astrin.uz (B. Ahmedov), maria.caruana.16@um.edu.mt (M. Caruana), kdialekt@gmail.com (K.F. Dialektopoulos),
jackson.said@um.edu.mt (J. Levi Said), abdurahmonnosirov000203@gmail.com (A. Nosirov), zhnobia.oikonomopoulou.21@um.edu.mt (Z. Oikonomopoulou),
odilbekhamroev@gmail.com (O. Yunusov).

https://doi.org/10.1016/j.dark.2025.101846

Received 8 December 2024; Received in revised form 20 January 2025; Accepted 27 January 2025

Available online 12 February 2025

2212-6864/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/dark
https://www.elsevier.com/locate/dark
https://orcid.org/0000-0002-8989-0462
mailto:ahmedov@astrin.uz
mailto:maria.caruana.16@um.edu.mt
mailto:kdialekt@gmail.com
mailto:jackson.said@um.edu.mt
mailto:abdurahmonnosirov000203@gmail.com
mailto:zhnobia.oikonomopoulou.21@um.edu.mt
mailto:odilbekhamroev@gmail.com
https://doi.org/10.1016/j.dark.2025.101846
https://doi.org/10.1016/j.dark.2025.101846
http://creativecommons.org/licenses/by/4.0/

B. Ahmedov et al. Physics of the Dark Universe 48 (2025) 101846

role in modifications of the model, and may also produce new IR limit possible realizations. As in regular curvature-based formulations of gravity,
TEGR can be modified in different ways to expose various new physics. The most direct modification of TEGR is known as f(T) gravity [32-43],
and is a direct generalization of the so-called torsion scalar T to an arbitrary functional of this variable. However, unlike most generic modifications
of the gravitational sector, f(T') gravity produces generally second order field equations, and agrees with a widening spectrum of observational
phenomena. Building on these toy models, there has also been growing interest in exploring possible scalar-tensor generalizations of the underlying
theory in an analogous fashion to Horndeski gravity [44].

Horndeski gravity encompasses the largest class of second order scalar-tensor models in which only one scalar field is adopted and geometric
curvature is retained. However, the constraints brought about by the observation of the gravitational wave event GW170817 [45] and its
electromagnetic counterpart GRB170817 A [46] has placed severely limiting constraints its most exotic branches of models which was a focal point
within the literature [47]. Building on this background, a teleparallel gravity formulation of the scalar-tensor Horndeski gravity was proposed in
Ref. [48]. The speed of gravitational wave constraint was revisited in Ref. [49] where it was found to be circumvented as a limiting factor in
the construction of models within the class of theories, where as in Ref. [50] the gravitational wave polarization modes were determined for
various subclasses of models. The post-Newtonian parametrization framework was investigated in Ref. [51] where the standard tests were found
to be observed for most for the majority of functional models of the theory. While efforts to build models motivated by Noether symmetries were
explored in Ref. [52] which also contains the full classification of these models. Other features have been probed such as the well-temperating of
the class of theories [53,54] as well as conditions on the stability of the system [55] and reconstructed classes of models [56].

For models within the class of theories contained in the teleparallel analogue of Horndeski gravity to more robustly be investigated against the
latest observational measurements, its cosmological perturbations must be determined. This is also important to fully understand the behaviour of
these models both in the early Universe as well as through its evolution into the late Universe. This was first investigated in Ref. [57] where the full
calculation is undertaken for a particular gauge choice. Here, the primordial power spectrum and the alpha parametrization of the perturbations is
described in detail. In the present work, we explore the gauge-invariant formulation of the cosmological perturbations which is important for
exploring different phenomena which have their own natural gauge choices in further works. To facilitate these expressions of the different
perturbation equations of motion, we also show the different gauge scenarios for the gauge-invariant cosmological perturbation equations. In
Section 2, the BDLS technical details are discussed while the cosmological perturbations are presented in Section 3. The expressions are analysed
for potential ghost and stability conditions in Section 4. The main results are summarized and discussed in Section 5. Units in which ¢ = 1 are
assumed unless otherwise stated.

2. BDLS gravity: The teleparallel analogue of horndeski theory

To begin, we will provide an overview of teleparallel gravity, including its foundational principles and the dynamics that govern its behaviour
in a cosmological background. This introduction will offer insight into the core concepts of teleparallel gravity and set the stage for understanding
its role in cosmological evolution. We will also discuss the basic equations and key assumptions underlying the cosmological dynamics within this
framework, establishing a basis for exploring perturbations and structure formation in teleparallel theories.

2.1. Teleparallel gravity

Gravity theories based on curvature, like General Relativity (GR), are built upon a geometric framework where the Levi-Civita connection, Ie"’ﬂv
(with over-circles indicating quantities derived from this connection), serves as the foundation for the theory’s core geometric structures, such as
the Riemann tensor. Consequently, curvature-based gravity models rely heavily on the Levi-Civita connection, as seen in the formulation of the
Einstein—Hilbert action via the Ricci scalar. Teleparallel Gravity (TG), however, presents an alternative framework, where the curvature-dependent
connection is replaced by the torsion-based connection, I' "W [23,27-29].

Practically speaking, curvature-based and torsion-based theories of gravity differ significantly in their mathematical frameworks. Curvature-
based theories like GR utilize the metric tensor g,, and its derivatives, whereas TG is formulated using the tetrad e | which defines the system’s
gravitational variables, along with a flat spin connection ©® ¢, Here, greek indices represent coordinates on the general manifold, while Latin ones
refer to the local Minkowski spacetime. Although, the tetrad and spin connection also appear in GR, their roles are more complex and less practical;
in TG, the spin connection serves as an inertial object. The tetrad directly related to the metric tensor by

A _B
guv =e ”e V’IAB and NAB = EA”EBVng s (1)

where E A” represents the inverse tetrad. This relationship shows the flexibility in choosing tetrad components, with the spin connection preserving
diffeomorphism invariance across these choices.
The tetrad-spin connection pair defines the potential components for a given spacetime in TG, enabling the teleparallel connection to be
expressed as [27,28]
Ao oAy A i A LB
r, =ke, 0ﬂev+EAwBﬂe (2)

Vo
where the flatness of the spin connection is ensured by the condition [23]

A A (e —
K" gy + @ ® g =0 3
There are also specific frames for any spacetime where all spin connection terms vanish for certain tetrad choices. This configuration is known as
the Weitzenbock gauge [58] and is consistently applied in cases where the spin connection field equations vanish identically for these particular
tetrad selections.

In TG, gravitational scalars are constructed by substituting the Levi-Civita connection with its teleparallel counterpart. As a result, the Riemann

tensor vanishes identically, R* ﬁye(F"W) = 0, even though the standard Riemann tensor based on the Levi-Civita connection remains nonzero,
R® ﬂye(f “MV) # 0. To proceed, we introduce a torsion tensor that relies only on the teleparallel connection, defined as [29,59]
A ._ A
T =2 )
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where the square brackets indicate antisymmetrization. This torsion tensor, which serves as the field strength in the theory [23] is invariant under
both local Lorentz transformations and diffeomorphisms [60].
The torsion tensor in TG can be decomposed into three fundamental irreducible components [61-63]
1

ay 1= g ey T ®)
v =T, ©6)
=X 4T ! 1 7

tlyv = 5 ( Apv + /ulv) + g (gwlvy +ng/1) - ggflyvv s ( )

representing the axial, vector and tensor parts respectively. Here, ¢ is the totally antisymmetric Levi-Civita tensor in four dimensions. Using

uvip
this decomposition, distinct gravitational scalar invariants can be defined as follows [64]
1
Ty = a,ad" = 15 (Ty THY = 2T, THY) (8)
. )
Tyec = vﬂu“ =T AquW ) )
Tien = L3t = 2 (T, 7% + T, THY) - Lya o (10
ten - fAuv - 2 Apv Apv 2 Autp .

These scalars encompass all general non-parity-violating scalar invariants involving up to quadratic contractions of the torsion tensor.
A particular linear combination of the axial, vector, and purely tensorial scalar invariants yields the torsion scalar, defined as [23]

3 2 2 1 1
T := ETax + then - §Tvec = 2 (EAAgWEBV + 2EBngEAv + EWABgMng) TA/AVTBM' an
The torsion scalar is essential, as it equates to the Ricci scalar up to a total derivative term [64]
R=R+T- 29, (e7%") =0, (12)
e

where R represents the Ricci scalar computed with the teleparallel connection, which vanishes as mentioned earlier, and ¢ = det (e"ﬂ) =4/—gis
the determinant of the tetrad. The conventional Ricci scalar computed from the Levi-Civita connection can then be written as

R=-T+29, (e1%") =T +8B, a3
e

where B represents a total divergence term.

An action based on the linear form of the torsion scalar leads to the Teleparallel Equivalent of GR (TEGR), which is dynamically equivalent to
GR [29,65]. By analogy to gravity theories based on curvature, the TEGR action can be generalized to an f(T') gravity framework [28,32-38,66-68]
where the Lagrangian is promoted from 7 to an arbitrary function of it, /(7). A notable advantage of f(T') gravity is that, unlike its curvature-analog,
f(R), the resulting field equations remain second order in derivatives of the tetrad, simplifying thus the equations of motion.

In this work, we explore the teleparallel version of Horndeski gravity, which studies the interactions of the metric with a scalar field. In TG,
scalar fields couple to matter in the same manner as in GR through a minimal coupling approach, where the partial derivatives are elevated to
Levi-Civita covariant derivatives, i.e. [29,69]

9, = %u » a4

which applies only to the matter sector. Building on the minimal coupling prescription, gravitational objects such as the torsion tensor are
associated with the teleparallel connection, while scalar and other matter fields are analogously connected with the regular Levi-Civita connection.
Through this scheme, teleparallel theories can be built. Based on that, we can examine the recently introduced teleparallel analog of Horndeski
gravity [48,49,51], also known as the Bahamonde-Dialektopoulos-Levi Said (BDLS) theory. The formulation of this theory is based on three
fundamental conditions: (i) the field equations must maintain a maximum order of second derivatives of the tetrads; (ii) the scalar invariants
involved should not violate parity; and (iii) the number of contractions with the torsion tensor must be limited to a maximum of quadratic order.
Although, higher-order contractions of the torsion tensor can yield second-order field equations, BDLS theory was intentionally crafted under these
criteria, which we adhere in our analysis.

Due to the second-order nature of various extensions of TG, the resulting action serves as an extension of the conventional Horndeski gravity.
Consequently, the conditions outlined above yield both the standard terms of Horndeski gravity and additional terms that are linear in contractions
with the torsion tensor [48]

L =v'¢,, 15)
where ¢ denotes the scalar field. Furthermore, we obtain terms that are quadratic in this context, including
Jy=d"d"d b, . (16)
Iy = 0, b, a”n
Js =115 by 1s)
Jo = ’Gﬂvtuaﬂ‘ﬁ;uqﬁ;vqﬁ:a‘ﬁ;ﬂ ’ a9
Jg = l"”vtaya(;b;vd);a, (20)
Jio= eﬂvcpavtawd’;ﬂ‘b;a , (21)

where the semicolons denote covariant derivatives associated with the Levi-Civita connection.
Therefore, we can express the teleparallel analogue of Horndeski gravity in the form of an action, given by

5
Sgpis = / d*xeLrge + ) / d*xel; + / d*xeL,,, (22)

i=2
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where the contributions from standard Horndeski gravity remain present as seen below [44]

Ly =Gy, X), an
Ly :=—-G3( X)C10, o
£y = Gy, X) (T + B)+ Gux(. ) (1) ~ 00" | o
[:5 = G5 (¢, X)Gn/lv(ﬁmv - éGS,X(d), X) [(Iﬁ(b)’; + 2¢;uv¢;va¢;a‘4 - 3¢§l4‘/¢mv Ij¢] ’ (26)

These terms are analogous to their standard Horndeski counterparts but are computed using the teleparallel quantities instead of the metric.
Nevertheless, they yield the same contributions to the equations of motion for specific systems. Here we define

Lrete := Grele (# X, T, Tays Tyees I 15 I35 J5, J6, I5, T10) 27)

where the kinetic term is expressed as X := —%a“ $d, ¢, L, represents the matter Lagrangian in the Jordan conformal frame and CO}MV denoted the
regular Einstein tensor. In this notation, commas signify standard partial derivatives. Notably, when Grg. = 0, we retrieve the original form of
Horndeski gravity.

2.2. Background cosmology

By varying the action with respect to the tetrad, spin connection, and scalar field, we can derive the field equations as detailed in Ref. [51]. The
broader scope of this theory results in significantly more complex field equations. Therefore, we will focus exclusively on the equations of motion
relevant to a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology, described by the metric

ds? = —=N(0)2di? + a(0)*(dx? + dy? + dz?), 8

where N(7) denotes the lapse function (which we can set to one after obtaining the equations of motion), and a(¢) represents the scale factor. To
derive the modified equations of motion, we adopt the tetrad choice e”M = diag(N (1), a(?), a(t), a(t)) which aligns with the Weitzenbock gauge [23,27].
By varying the point-like Lagrangian with respect to the dynamical variables N (¢), a(t), and ¢(7), we derive the equations of motion of the system
for a flat homogeneous and isotropic background. This leads us to the Friedmann equation
5

Erae + Y, & =0, (29)
i=2
where
Erete = 6HPGy 1, + 12H* G 1 +2X G x — G, (30)
& =2XGyx —G,, (€3]
& =6XPHG; y —2XGs,, 32)
Ey=—6H>Gy+24H*X(Gyx + XGyyyx) = 12HX PGy gy —6HPGy 4. (33)
E5=2H’X¢ (5Gs x +2XGs yx) —6H>X (3Gs 4 +2XGs 4x) 34
and
Lre = Go(d, X, T, 1), (35)

which encompasses all the nonzero scalars associated with Gr,.. The Hubble parameter is defined as H = d/a, and dots indicate derivatives with
respect to cosmic time. The torsion scalar is expressed as T = 6H?, while I, = 3H¢ and X = %d)z, with commas indicating partial derivatives.
Next, varying with respect to the scalar factor leads us to the second Friedmann equation

5

Prete + Z P =0, (36)
i=2
where
Prele = _3H‘ISG~6,12 - 12H*Ggr - %(4HG~6,T + <1566,12) +G., 37)
Py =G,, (38)
Py =-2X (G54 +¢Gsx) . (39)
Py=2(3H>+2H) G, — 12H*XGy x ~4HXG, x —8HXG, x ~8HXXGyxx +2 (¢ +2HP) Gy +4XGyyy +4X (6 —2HP) Gy yx, (40)
Ps = —2X (2H3¢ + 2HHp+ 3H) Gs x — 4HX2$Gs xy +4HX (X = HX) G5 gy +2 [2% (HX)+ 3H2X] Gy +4H X GGs 4y - (41)
Finally, the modified Klein—-Gordon equation can be obtained by varying with respect to the scalar field, resulting in
a%% [a3(J + JTele)] = P, + Pry. (42)
where the standard Horndeski terms appear as J and P,, arising from the Lagrangian terms £;, with i =2,..., 5 as shown in [70]
J =¢Gyx +6HXGs x —2¢Gy 4+ 6H* ¢ (Gyx +2XGyxx) — 12HXGyyx +2H>X (3Gsx +2XGs xx) — 6H?$ (Gsy + XGs 4x ) (43)
Py=Gay—2X (Gygy+ PGayx) +6 (2H? + H) Gy + 6H (X +2HX) Gy yx — 6H> XG5 4y + 2H> XG5 4x (44

where Jr, and Py, denote additional terms associated with the teleparallel Horndeski, given by
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I1ele = PG x » (45)
24 ~ d ~
Pre = —9H Gg 1, + Gg g — 35 (HGo,IQ) . (46)

Notably, the parameters of G, are independent of T}, and T,,,, as these values are zero for the flat FLRW metric. Consequently, we can express the
contributions solely in terms of T, given that T = —(2/3)T,.. = 6H? in this scenario. It is important to recognize that this relationship may not
hold true at the perturbative level [49]. In this study, we investigate the cosmological perturbations within the teleparallel analogue of Horndeski
gravity. This approach will facilitate more thorough explorations of specific models within the framework, potentially enhancing our understanding
of which models best align with observations regarding the cosmic evolution of the Universe.

3. Cosmological perturbations

We will now calculate the perturbations around a FLRW spacetime up to second order for the BDLS theory, which is given by the Lagrangian (22).
Since the dynamical variable in our formulation of the theory is the tetrad, we will perturb it as

eA#:e'A”+5eAw (47)

where &4, is the background FLRW diagonal tetrad, i.e.
&*, = diagI N (1), a(t). a(t), a(t)] 48)
and e 4 1s the tetrad perturbation. We decompose it according to the group of spatial rotations and thus it is described by
o] a(0,p +u;)

st =

) ) ) (49)
# | 84 (0B + o) aé"‘/(5,-/-1//+0,»6/-E+26(iwj)+%h,»/-+€uk(z3k6+Vk))

The 16 components of this field are split into one traceless and transverse tensor h;;, three traceless vectors u;, v and w;, one traceless pseudovector
V* and five scalars @, y, B, f and E as well as one pseudoscalar ¢. One can easily find that at the linearized level, the (pseudo)scalar, (pseudo)vector,
and tensor perturbations decouple. In the following subsections, we will treat these modes separately, and study the degrees of freedom (DoFs) of
the theory, but before that, let us see how the perturbative variables transform under diffeomorphisms.

3.1. Gauge symmetry

The BDLS action (22) is invariant under infinitesimal coordinate transformations
XM = XM = x4+ EH(X). (50)

Under these transformations the tetrad becomes

v
A 1A A Ox
e’ , —e =e", —.

# H Y ox/H

We decompose the transformation vector as
o 1. .
g = (&2 (¢ +80,8)|

with £° and ¢ being scalars and &' a divergenceless vector. The perturbative variables on FLRW transform as

=0, (51a)
5 = 5+ 4, (G16)
=0+, (510)
F=w+HE, vk=vk4 2—1[16"”‘0,6, (51d)
f=p+ie, =y, (5le)
B=B-H:+E, b, =v;— HE +¢&;, (511)
E=E+1§, W= w +i§, hi;=h;;, (51g)
a ! P24t Y Y

In what follows, we present the perturbative analysis of the different modes separately.
3.2. Scalars

Regarding the scalar perturbations, apart from the five scalar modes discussed above, we have an additional one coming from the perturbation
of the scalar field. Specifically, we have
b=y +6¢.
The BDLS action (22) up to second order terms becomes

B

5 (A6 V?® + A V250 + A9V 5

2B — aE)\2 B—aE .
Sq :/dzd3xa3 [Al (V (Bz ”E)> + ( > ) (A V2@ + AV + A V26 + AsV26h) +
a a

. 5\ 2
\Y V2 V25
+A,0V2y + Alezyy) + a% (A7V2¢ + A“VZW) + Az <7ﬂ> +@ (AMa_zW + A5y + A6 + A17a—2¢

5
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VyVé
a2

2
‘ Vs
P Air + AnsSibir + Ao ( d’)

a

. Vb \2 vy’ .
FAi53) + Aso (T )+ Ax®? + Ay (%’) + A + Asy
+ A6 + Ay ] ; (52)

where all the coefficients A, to A,g are presented in Appendix A. Note that further integration by parts would reduce the number of terms present
in the action, but for simplicity this is omitted. Coefficients {A,, A;, A, A1, 43, A9} are purely teleparallel and would completely vanish in the
standard Horndeski limit.

As already mentioned above, we have the gauge freedom to choose one element out of each set {6¢, @, 8, w} and {B, E} to be set to zero. From
the above action, it is easy to obtain the results expressed in different gauge choices. In this section we will work with gauge invariant variables,
but in Appendix B we will present the same results in flat, unitary, Newtonian and synchronous gauges. In that way, people who want to emphasize
on different things can choose any gauge they want to work with.

Since {5¢, D, B, v, B, E} are gauge dependent under (50), we define

X =3¢ — adyB, (53a)
Xy =®—a(Hp+ ), (53b)
Xy =y —aHp, (53¢)
X, =-B+aE, (53d)

which are gauge invariant. Substituting these in (52) we get

S =/dld3xa3

22\*
+ Ap2, 2y

o (VAN VRNE VD (Y
A1X2+A2 T + Az T +A4X3+A5X1+A6KYI+A7 T + Ag

_VAVX, _ I 52 2 2 A 2
+AIOT+A11X2X1+A12X2X1+A13a—2+A15X3X1+A16X3X1+A17T

VX, . L. o

+a_z(A14X2+A18X3+A19X1+A20X1) ) (54

where again, the coefficients A, — A,, are presented in Appendix A. We notice that not all the scalar modes are propagating and specifically X,
and X, are auxiliary. In order to find the action with the propagating modes only, we need to vary the above action with respect to the auxiliary
fields, find the constraint equations and substitute them back to the action. This will be done in the next Section 4.

3.3. Pseudoscalar perturbations

Moving on to the pseudoscalar mode ¢ and perturbing the BDLS action up to second order, we get

3
Sps = / dr d3x% [B1(0,6)% + By(40)?] (55)
where
By =4Gree 1, +9XGrele 15 = 12X Grepe g, » (56a)
4
By = el <2X Grete,s, — GTele,Tax) . (56b)

The pseudoscalar in the tetrad, introduced to account for changes in sign under parity transformations, only contributes to the antisymmetric part
of the tetrad. It can be seen that its contribution vanishes when calculating the symmetric metric, which is further highlighted in the action (55),
where all coefficients are from the teleparallel sector.

In some classes of teleparallel theories, like Type I, Il and V New General Relativity (NGR) the pseudoscalar mode propagates [63], while in
others, like f(T) it does not because of the presence of remnant symmetries [71,72]. Since both NGR and f(T) theories are subclasses of BDLS we
cannot extract a unique result for all subclasses regarding the propagation of the pseudoscalar mode. However, in case they are propagating, in
order for them to be ghost-free, the condition

B, >0, 57)

has to be satisfied.

3.4. Vectors

Let us now study the vector modes. In the curvature-based theory, the vector sector decays immediately. Here, where the fundamental dynamical
object is the tetrad, the same perturbation procedure is applied to the vector sector, yielding
Vu)? Vu)(Vv Vu)(V Vu)(V
(Vu) —Cg( v)( W)+C7( v)( ll)+C8( w)(Vw)
a? : a a? a

a? a? a?
va)(V VxV)4a
10( u); W)+2cz( 2) w

Vv)? Aw)? VV)? .
svz/dzd3xa3 [c]( v) +cz( w) +C3(Vv'v)2+C2( V) +CyVE+ 50 + G

+C (Vu)(EVv'v) .

C

+ i<C4V(V><v)+C8V(V><u)+C]0V(V xa)+C V(V ><u)> ] (58)

where as previously, the coefficients C; — C;1 are shown in the appendix.
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Note that the pseudovector modes couple with the vector ones already at linear order (in constrast with the rest of the modes which couple at
second order and beyond) and thus cannot be treated separately.! While non-teleparallel coefficients appear in the action, further integration by
parts would show that any remaining contributions correspond to a non-dynamical mode, which in this case is v;. By fixing v;, w; or V; to zero we
can obtain a gauge fixed result (see Appendix B for further details). Nonetheless, the gauge invariant route is opted.

We define the following gauge invariant variables

Y, =v; — 2auy;, (59a)
Z;=V;+ eukajwk. (59b)
and the action (58) takes the form

S\,=/dzd3xa3 [Cl W +6, ¢, C +C, 72 + Gy A

60
a a? 3 a a a2 60)

2 : 7 2 2
(Val;) +€3Z(qu) 4 Vu)(VY) ~ (VXwZ +C~6Z(V xY) 5 (VZ) +é (VYZ')

where again the coefficients are shown in Appendix A. The non-teleparallel terms only appear in {C,,C,,C,} such that if the Horndeski limit is
applied to the system, all modes would be non-dynamical and give a trivial solution, as expected. However, as can be seen from the action (60),
not all modes are propagating; this will be studied in the next Section 4.

3.5. Tensor perturbations

The quadratic action of the tensor modes reads

Sy :/dzd3x § [D,h,?j - %(Vh,.j)z] , (61)
where

D =2 <G4 ~2XGy x + XGs gy — HXGGs x +2X G g + %GTele,JS - GTele,T) , (62a)

D, =2 <G4 ~ XGs 4 — X$oGs x — GTele,T) ; (62b)

where G; , denotes the derivative of G; with respect to A. As expected, when G, — 0, Egs. (62a) and (62b) take the standard Horndeski form
for the perturbed action, as presented in [70].

Variation of the action (61) yields the propagation equation of gravitational waves, which confirms the result in Ref. [49]. The standard «;
parametrization of cosmological perturbations is presented in Ref. [57]. The squared speed of the tensor modes reads

D
2 p)
== (63)
T Dl
which in general, is not equal to unity. Furthermore, as will be discussed in Section 4, we can deduce from the action (61) that the conditions
D, >0 and D, >0, 64

must hold in order to avoid ghost and gradient instabilities.
4. Ghost and Laplacian stability conditions

In the previous section we presented the quadratic actions for all the modes of the perturbations, tensors, pseudoscalar, scalars and vectors.
The tensor modes are two, since h;; is transverse and traceless, and in order for them to propagate healthily, conditions (64) must be satisfied.
Similarly for the pseudoscalar mode condition (57) should hold. In this section, we study first of all which are the scalar and vector modes which
propagate and second which are the stability conditions for them to be healthy.

Ghosts represent extra degrees of freedom that may propagate due to a negative kinetic term, these instabilities can have a detrimental effect
on the health of the underlying theory. In order to identify the possible appearance of ghosts, the action is expanded up to second order about the
FLRW background. In Fourier space, the auxiliary modes are determined and eliminated by appropriate variations of the action with respect to
those non-dynamical modes. In practice the auxiliary field variations are substituted back into the original system and thus removed. In this way,
only dynamical modes are retained in the resulting action. This is performed separately for the scalar, vector, and tensor sectors.

Firstly, a gauge invariant action is formulated by taking its variations with respect to spatial and temporal parts of an arbitrary vector field
transformation, and imposing that this vanishes. In turn, a diagonalized kinetic matrix K can be produced wherein a constraint can be associated
with every entry. Due to the time dependence of the background spacetime, these constraints may also express some time-dependence. At this
point the gradient or Laplacian instability can be defined as the imposition that the speed of propagation of these modes is positive definite. In
this way, both the ghost and gradient instabilities are confirmed to be stable. Due to the high energy regime being the most likely region where
ghosts appear, a high & limit is assumed throughout the procedure.

The general approach rests on an action perturbed up to second order where non-dynamical modes are identified. Once these modes are nullified
and then substituted back into the original action, it will take on a form

1 d3k . . k2 .
@ [;?T K@k 7+ 7 (—ZG(t, k) + M, k)) 7+7'Qa, k);?] ; (65)
a

=— [ dt

2x2 n)?
where j is a vector of modes, G is the gradient matrix, M is the matrix corresponding to non-dynamical portions of the modes, and Q is an
imaginary matrix. For the high-k limit, ghost modes correspond to entries of K, while positive definite propagation speeds correspond to gradient
instability corrections.

1 In principle, one could set the pseudovectors to zero as a gauge choice, since one of the {v;,u;,V;} can vanish. This will be studied in the next section; here
we want to study gauge invariant variables.
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4.1. Scalars

The scalar and pseudoscalar modes do not suffer any mixing and so can be treated separately. This approach is identical to the Arnowitt—
Deser—-Misner (ADM) decomposition used in other torsion based treatments [55,73], and similarly leads to the same metric as curvature-based
formulations. Taking the perturbation up to the second order followed by integration by parts and the insertion of the background equations of
motion, the gauge invariant action (54) produces the Fourier transformed form given by

~ o ~ o 2 2 ~ ~ ~ ~ ~ ~ ~ ~
Sg _/dt 2 [A6Xf+A4X32+% < ’;—2A8X3+A2x§+A3X§+A7 X2 4 A1 XXy + Ap X, + Ay 238, — Xy(A4 &,
(275)2

b A Xy 4 Apg 2, + Aoy 2,) ) SRRy 4 A Xy, + Ay 0,2, + Ay B 4 A K24 A0+ A 2%, | (66)
where X, and X, are non-dynamical modes. Taking variation with respect these two quantities results in the respective relationships
0= ’Z—j (240, + Aigs + Ay = Aysy) + Aoy + Appy + 24,2 + A1) X, ©67)
0= 2'2—2,4{8/\?4 = Ao, = Ay — A, — Ay | 68)
which when substituted back in the action (66) gives
ey /dl (2”)2 @ A7 + Ay X, %) + A7 + A, X7 + AsX, 2 + AgXT + A2 X5 + Ag R X5 + AgX X5 + A )X, X5 (69)
where
G, = A Ay = A By = As By = Ay (R0 = 40045) + 55 (A Ay =~ o By = Ay 8, 425 (- A Ay + 240
2AL)) - S A (B -4 ) (70a)
ady = Ay (A Ay + 24, Ag) + Ay (A Age — 245 41)) - Z—z (24, A19 A5 + A (= Ay Ay + 245 41,)) (70b)
iy = A Aridag = A By = Ao By = Ay (A0, = 440 Ag) ~ 5 2y (BB - 440 As) (700)
A Koo - - Mo I
A, = —a—2A3 (A2, - 44, Ag) - a—4A8 (A3, —44,4;) . (70d)
aAs = I;—jfilo (A Ay —2434) (70e)
GAg = —A A3, — A, (A2 — A4 AG) + Ay (A1 A 15 — AgAy) — ];—zfiz (A% - 44, Ay) . (70D
aA; = ];—z [-4%4/{17 + A Ay Ay = 245 A0 Ay, +4-"{1-"{8-"{17] - zz—jv‘{s (*‘{10-"{13 - 2/{2/{17) > (708)
dAg = —I;—zf{lo (A1 Ayy + 245 41,) | (70h)

s L . L . K2, . o O O
aAqg = —A14A15 + A Ay Ay =24, Ag A g + 44 Ag A5 + Ag Ay Ay — 243 Ag Ay + z (A13A14A18 —2A,A13A 9 +4A, Ag A5
245 Ay A3) (70i)
A o . . O O - - - K2 - R S .
A= —A5 A + A Ay Arg — 24, Aig Agy + 44, Ag Ay — Ag (—A g Agg + 245 A) + 2a_2A2 (= Aig Az +2A45As5) (70))
and @ = —A?, + 44z (A L+ I;—jA~2 . Provided that a # 0 the following analysis holds, otherwise the analysis would need to be altered at the (66)

stage of the calculation. Additionally, emphasizes have been made to keep the k-dependencies. At a later stage this becomes crucial to obtain high-k
limit. Through integration by parts Eq. (69) changes to

ss= L [arLh o | (4 - L)) e dere (A - 2L @dy)) a2 A2+ (A - L (@24, a2,
2k2 (2”)% 243 dt 1 1 243 dt 3 3 a3 dt 3

+ (Ao —AS)X1233+A10X1X3] . (71)

When looking at the kinetic contributions, it was noted that there is a mixing of modes of XX, corresponding to the coefficient .A;,. To obtain a
diagonal kinetic matrix, as required in Eq. (65), the gauge invariant quantities are redefined as

A
X, =Y, Xy = 2—§<A1°>1P1, (72)
6

where ¥, and ¥, are still gauge invariant as they are a linear combination of the previous dynamical modes. Due to the complexity of the action
upon substituting these new fields, the generalized result has been omitted. By considering the high-k limit, the result simplifies to

=53 /dt [A ¥4+ A7 + = (quﬂ + AW+ AW )) + AP+ AT+ AW, + AgP | (73)
K
(27r)2
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Before listing the coefficients of A; for i € [1,9], we consider the temporal Fourier transformation ¥ — iw¥ such that the Lagrangian portion of
Eq. (73) can be expressed as follows:

c2 o 1R« .
—? A+ B A+ AL (a—zAs + A+ ta)Ag) (q/1>

Ly = (W, le) 74)

%§&+&+m%) —? A+ S A+ A4 |\
The dispersion relation given by w = csf shows that @ is of the same order of k. If we consider only the leading order of k, coefficients
(Ag, A7, Ag ,/{9} do not contribute, thus

=55 /dt [A P2 4 A, 97 + = (A3'P2 + A2 +A5¥’1¥’2)] , (75)
" @x)2
where
5 o —AgAg Ay + ALA2 + AG A2
Ay = Ag+ — 20 0 TR (76a)
A2, — 44, Ay
. A
A2 = .A.4 - # N (76b)
A= Ao i%‘ (A A3 = 24, A1) (A1g Ay = 241645) (AT, = 44, A3)(A g Agy — 2 A5 A ) 760)
SRRy A 24,(A%, — 44, Ay) 44, (A2 — 44, Ag) ’
A~2
A=Ay - 2, 76d
4 3 A, (76d)
A= A Apd;s (AT = 4A, A3)(— A 5. Ay + 2 A5 A ) 76¢)
ST g, 24,(A2 — 44, Ag) '

These results hold given A2, — 44,45 # 0, A, # 0 and Ag # 0. Next, taking variations with respect to the dynamical modes ¥, and ¥, results in
the field equations

A’ A A
ox¥, +( =L !1/1—_2 S wl—_ 2y, (77)
A, a \ 4, 24,
) AN A A
o~ + | =2 ‘Pz—— 4 '1/2—— )y, (78)
A, a? \ A, 24,

respectively, indicating that a mixing of modes occurs due to .45 contribution. These two systems decouple for the condition

As=0. 79
Under the restriction of Eq. (79), the propagating speed for each mode is given by the coefficient of the gradient term such that
A A
2 =-2350, and ¢ = -4 50, (80)
1 Al 2 A2

and ghost stability can be attained provided that

My, =A;>0, and My, =4, >0, (81)
and Laplacian/gradient stability for

Ny, 1==A;>0, and Ny, i=-A;>0. (82)

By satisfying these conditions, ghost and gradient instabilities can be removed from the resulting models.
4.2. Vectors

We next consider the vector perturbations keeping with the gauge invariant approach. For this sector, the second-order perturbation where
integration by parts and the background equations of motion are resubstituted produces

T S ) ”"k - .
SV_/dt a [clu,.u'+c7z,.zl+—2(czu,.u'+c4u,.y'+cgziz'+cgy,.y') L(C3Ziu—Csiy Z,+Cs 2, ) | - (83)
(2m)? ¢
Now, taking the variation with respect to the non-dynamical mode Y, yields the equation
k2 - - i(:‘ijkkj ..
0= 7z (Cau +2C3 ), ) — —CeZi (84)

which when solved for Y, and substituted back in action (83) yields

o OGN . 2L ) . C? , i€k, . .
SV_/dt & |Gt +(Gr )22+ 5 (qzz - (G- % uu ) - ’((63-Hcs+c5)z,-uk
am ¢, a 46, a
C,C
<Q———>Zw>]. 85)
29
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Table 1

List of propagating degrees of freedom for GR, f(T), f(¢, X,T), NGR and Horndeski gravity. In the case of f(¢, X,T) and NGR, diagonalisation
of the kinetic matrix is required thus scalar modes are expressed in terms of {¥,,%,}. The scalar sector of the rest of the theories can be
expressed in terms of {X|, X;}.

Theory PDoFs (Pseudo)Scalars Vectors Tensors
BDLS 9 ¥, .0 u;, 2, hy;

GR 2 - - hy;
£(T) 2 - - hy
(. X,T) 3 L 23 - hy;
Generalized teleparallel dark energy 3 X, - hij
Generalized scalar tensor 3 ¥, - hy;
NGR 8 Xs,0 u, Z; hi;
Horndeski 3 ¥, - h

<

Both the kinetic and the gradients portions of the action are a diagonal matrix when cast in the form given by Eq. (65). The term corresponding to
Z,u;, can be omitted within the high-k limit as it is of a lower order of k-dependency in comparison with the rest of the terms. In contrast with the
scalar sector, the term Z;u, appears to have the same order of k upon substituting the temporal Fourier transformation and w* = 6\2/1;_2 To further
analyse this scenario, we take the variation with respect to the both u; and Z;, respectively

é 2 (€2 —4CyC i€kl (2C,Cs — CyCo \ .,
Omii, + | 3H + =L uk—k— 4 07 u, + ik < 95~~46>Z‘, (86)
¢ a? 4CyC, a 2CyC,
(6 ))
||+ = 5 5 j 55 AA
. dr 7T A . 2 4GyC, iejk! (2CCs—CyCo \
PO FYF O B N W LT VA z-k—<— g S (200G 2 GG )y ®7)
a <é7 + c_§> a? \ (4CyC; + C2) a 4CyC; + C;
4G,
for which the two modes are said to decouple provided that
2CyCs — C4Ce = 0. (88)
When this condition applies, the propagating speed for both modes can be determined:
4CyC, — C2 46, ¢
63 Z=#>O, and C% Z:—<+8~2 >0. (89)
4CyC, (4GoC; +C7)
Thus, ghost stability can be obtained when
. e
M, :=C >0, and M;:=C+—2>0, (90)
4Cy
and Laplacian stability satisfied provided that
A2
N, =6 - —=>0, and N :=-CG;>0. 91)

which both depend on a combination of first order derivatives of the action functionals.
5. Conclusion

The teleparallel analogue of Horndeski gravity expressed through the BDLS action in Eq. (22) offers an interesting way to circumvent the
restrictions placed on regular Horndeski gravity by the multimessenger events associated with GW170817 and GRB170817A [74]. In the present
work, we have explored the gauge-invariant cosmological perturbations of this framework theory together with some initial stability and ghost
conditions imposed on these classes of models. This builds on previous work [57] where the cosmological perturbations were determined for a
specific gauge. The current work broadens the applicability of this analysis, and provides a practical way forward on both the gauge invariant form
of these perturbations, as well as example cases of the most popular gauge choices, which appear in Appendix B.

To perform this analysis in a gauge invariant form, the tetrad inherits the perturbative form from the metric through the choice in Eq. (49), which
importantly remains within the Weitzenbock gauge in terms of the form of the spin connection components. The general cosmological perturbations
are then probed for their scalar, pseudoscalar, vector and tensor modes in Section 3. The gauge invariant nature of these perturbations, coupled
with the complexity of the underlying model framework results in highly involved expressions for the perturbation modes. For this reason, we
provide example cases of the most popular gauges in the literature in Appendix B for the scalar and vector modes.

Already, at this level of analysis an assessment can be made on the propagation of modes and whether they contain ghosts or other instabilities,
which are then probed in Section 4. The generality of this class of models means that it must be imposed that the scalar field kinetic term be positive,
while the speed of propagation of propagating modes should also be positive, which will respectively alleviate ghost and Laplacian instabilities
immediately. The gauge-invariant approach results in fairly convoluted conditions on the underlying Lagrangian terms, which for the scalar sector
give Egs. (81)-(82), while for the vector section Egs. (89)-(91), and tensor sector Egs. (64). By exploring models that satisfy this combination of
conditions, one can produce cosmologies that do not suffer from perturbative stability pathologies.

The general BDLS framework can be reduced for specific subclasses which represent a smaller number of propagating DoF. For the full treatment,
it is found that there are 9 propagating DoFs which include 2 scalars, 1 pseudoscalar, 2 pairs of vectors modes, and the regular pair of tensor
modes. This confirms the indications made in Ref. [50] where the DoFs were obtained through the respective dispersion relations of the different
perturbative sectors. In Table 1 the number of propagating DoFs is listed for several leading subclasses of the BDLS frame. The action of the
generalized teleparallel dark energy theory is given by S ~ f (AT — 1/2(d¢)*> — V(¢)), for the generalized teleparallel scalar tensor it is

10
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S ~ f (F(@)T + Go(¢, X) — G3(¢p, X)), while NGR is the linear combination of all the three parity preserving, quadratic torsion contractions.
By substituting these subclasses into our results, we confirm the expected 2 DoFs for GR and f(T) gravity, as well as an extra scalar mode for
f(¢, X, T), regular Horndeski gravity, and other forms. It is only NGR that also contains a large number of propagating DoFs which in that case
results in 8 DoFs.

In the case of f(T) gravity, the number of propagating DoFs falls to 2 due to the case when the background is Minkowski wherein the extra
scalar DoF is rendered non-dynamical [50]. By exploring the longitudinal gauge with the added assumption that g = 0 gives identical results as
in Ref. [71]. However, this may yield over-fixing since the gauge choice only imposes that § = B. As for the NGR case, the non-trivial linearized
field equations for the Minkowski limit imply that Grejey, = 0 which forces the pseudoscalar contribution to be non-dynamical. The other DoFs
propagate in agreement with Ref. [63]. This does not occur in the general BDLS framework since the field equations also depend on the invariants
Tox. J1. J5. J1o which incur contributions from both B, and B5,.

The central motivation of this work was to determine the gauge-invariant cosmological perturbations of the teleparallel analogue of Horndeski
gravity as expressed through the BDLS formalism. It would now be interesting to investigate the numerical strength of the propagating DoFs and
their impact on changes to the standard cosmological paradigm. To do this, further physically motivated models are needed, which can be analysed
against a spectrum of observational data connected to the power spectra of these perturbative modes. The cosmological perturbations can also be
further investigated in order to assess condition on producing healthy theories.
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Appendix A. Coefficients of the quadratic actions

The scalar quadratic action of BDLS theory in terms of the gauge-dependent variables is given by Eq. (52). The coefficients A, — A,; are shown

here

a2

A== [ ~6Grele,, + 12H *(9Grele 1, .,

6 vec’vec

+3Grele 1,1,) ] ) (A.1a)

+ 4GTele,TT) + 12H¢.0(_3GTeleT

vec

2
— 12Greerr 1, +2G1eleT1,) + $0” (4GTele Jg + GTele,ss

vec

Ay =—a [ ~12H3OGrger. 1

vecfvec

+4(=3Grele T T OTelerT)) + 450(2G4,¢U = Grele, 1, = 2X(G3 x = 2G4 g x + Grele x1,))

1, +36Greierr, + 10XGs x +4X>Gs yx) + 2H [ 2G4 +3Greer,,, — 2Greler + 2X(—4Gy x — 2Grele x7

Tyec

- H2¢0(_54GTele¢T

vec

+3(Gs g, = Grele.y 1, + Grele, 7, ) + 4X*(=2Gy xx + Gs 4, x) ]] , (A.1b)
A3 =a [404 +6Grele T, — 4GTeler — 12H Z(QGTele,Tvechec = 12Greler 1, +40Tele ) + 2X(—4Gy x + 2G5 4 — 3Grele 1,1,)

— 2Hdo(~18Greer,,. 1, + 12Grater 1, + 2XGs x) ] , (A.l0)
Aj=a [ H(=2Gy 4 +6XGy y —20XGyy x +4XGs s +3Greies, + 6Grete gyrie. — 4Greleyr) + H Bo(6Gy x —6Gs 4 +12XGy

—8XGs 4 x) + H (6XGs x +4X>Gs yx) + Bo(Gy x — 2G5 4 +2Gy 4 4 + Grelex — Grelepy1,) ] , (A.1d)
As=-a [ ~2Gy g, + Grele.s, +2X(Gs x = 2G4 g x + Grelexr,) + HPo(4Gy x —4Gs g +3Grele 1,1, — 6GTele X T, T 4CTelexT

+4X(2Gy xx — Gs 4. x) + H*(=18Greier, .1, + 12Greter1, +6XGs x +4XGs xx) ] , (A.le)
Ag=a [ 602Gy 4, = Grete.1, = 2X(Gs x = 2Gy g x)) + 2HQ2Gy + 3Greer,,. = 2Greler + 2X(=4Gy x +3Gs 4 ) +4X2(=2Gy x x + Gs 4 x)

- 2X¢50H2(5G5.X +2XGs xx) ] > (A.1)
Az = %a[gGTele,Tvec +2X(=2Grele, 7y = 5Grele,s5 + 30Tele,s; +2X Grele,sq)| » (Alg)

Ag=-—a [ 2X H*(3Gs x +2XGs xx) + H>§y [ 6Gy x — 6Gs 4 — 2Gree s, + 6H 3Greter, . sy — 2Grelersy) +4X (3G xx —2Gs 4 x)
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= 3¢0Grele. 1,5 | +%0 [ Gox —2G3 4y + 2G4 g9y + Grelex = Grele.gyr, — H(Grele s, + 3Grele,1,1,) = $oGrele x1, |
+H [ 2G4 + Grele1, + 18HGrele 1, .1, = 12H Greler1, + 2X(3G5 x — 10Gy 4 x +2Gs 4 3. — Grele.gys; — 3H Grele 1,1,

= $0(Grele,s; + 3GTele, 1, + 2X Grele, x ;) ]] , (A-1h)
Ag=a [ ~2Gy 4, +2X[Gs x + H>(3Gs x +2XGs xx) = 2Gy g x|+ Grete.s, + Hby | 4(Gux +2X Gy xy — Gs g — XGs g ) + Grete s, ]] . (A1D)
Ay = —Za[H (—6GTele 1, +4CTele) + <lsoGTe1e,12] , (A1)
Ay = %a[IS(GTele,Tvec — Greler) + X(4GTele gy + 10GTele j5 + 3Gele sy —4X GTele,JG)] ; (A1)
Ajy = 4a[ =Gy + XQGy x = Gs gy + HoGsx)] (A1D)
A = é“2 [ZX (=2GTele,sg + 2X GTele, g = 3Grele. g5 + 3Gele.s;) + 9GTele,Tvec] , (A.1m)
Ay = % [ —18(G4 = Grele + Grele,e) + X(36Gy x = 3Grete s, — 209Gs 4 +2Grete sy + 5Grele s;)) + 1860 X HGs x +4X Grele g, ] , (A.1n)

vec

Ais=-3 [ 12H° (9GTele,Tvechec +4(=3Grele T, T GTele,TT)> + ¢0(—2G4,¢0 + Grele,r, +2X(G3 x — 2G4 4, x + Grele,x1,))

+H 2<I5()(—54GTe1e,T 1, +36Greler, + 10XGs x +4X 2GS,X)() +2H(-2G, — 3Grele 1y, + 2GTeler +2X(4Gy x +2G1ele xT

vec

=3(Gs gy = Greley 1, + Gele.xTye.)) +4X° (2G4 xx = Gs gy x)) ] , (A.1o)
Ajg = Gy g + Grete gy +6H? [ Gy g +3Grele gy 1. — 201elegr + X(—4Gy 4 x —4X Gy g xx +3Gs g 50 +2XGs g 40 x) | —2X(Go g x

= Gs.4y9y + Orelegyx) = 2X H>Bo(5Gs 4 x +2XGs y xx) — 6HB (XG5 g x — Gy g = 2X G g o x + Grelegyry) » (A.1p)
Ay = =2Gy 4 +2X(Gs x = 2G4 x + H*(3Gs.x +2XGs y3) + Grete.s, + Hbo(4Gyx +8X Gy xx — 4(Gs,g, + XGs g x) + Grete ) - (A.1q)

Ay = =2H?[15XGs x +4X*(5Gs xx + XGs x xx) = 27Grete 1, 1, + 18Greters,| = 3H [ =2Gy 4 + Gretes, +2X(3G3 x +2X G5 xx

—8Gy pox —4XGyy xx +3Grele.x1,) ] —6H2<150 [ 3Gy x + X(12G xx +4X Gy xxx — 7G5 g.x —2X G54 xx) — 3(Gs 4,

— Grele.1, 1, + Grele xT,o.) + 2Gtele x1 | —$0[G2,x = 2G3. 9y + Grele x +2X(Go xx — Gy g x + Grele xx))] » (A.1r)
1
Ay = 9 [2x (=2GTele, sy + 2X Grele, g = 3GTele,s5 + 3Gele,s;) + 9GTele,Tvec] , (A.1s)

Az = 18H*OGreer, .1

vecvec

+4Gelerr) +3H 2 [ —2G4 = 3Grelerr;

vec

+2Greer +2X(7Gy x + X(16G, xx + 4XGyxxx
Toe) + 4GTelexT) | +X [Go x = 2G5 4 + Grele x +2X(Ga xx — G3 4, x
+ Graexx)| +3Hdy | —2Gy 4, + Grele,1, T 2X(2G;3 x + XG5 xx — 5G4 4,x — 2XGy g xx + 2G1ele x1,) | +2H3 ¢y [ 15X G5 x

1, 7 36Grele 1, ] i (A.11)

- 12GTele,TT

vec

= 9G54, x —2XGs 4 xx) — 6(Gs 40 — Grele. 1,1, + Orele.x

+13X2Gs xx +2X°Gs xxx — 54Grer

vec

- GTele,T) + X(_905,¢0 - 2GTele,Jg + 2)(GTele,.16 - 5GTele,Js - 6GTele,J3 - 9¢5.0G5,X) ] ’ (A~1u)

Tyec

Ay = % [ 9G4 +2Gree,
Ay =66, + 12XGy x — 6XGs 4 +9XGrele 1,1, — 9GTele T, T 0C0Tele,r + 18H 2[9GTele,TveCTvec = 12Grele 1, +4GTele 7]

+6H o[ XGs x — 9Greler, o 1, + 6GreleTr,] > (A1v)
Ay = —4X H2Gs x +4Gy g = 26 s, +4X(<2Gyy x + Gs gy — HGs x) +46y(=Gyy = 2XGy xx +Gs 4, + XGs g x)

+ Ho(—4G, x + 4G5 4 —4XGs 4 x + Grele,s, — 4¢(Gs x + XGs xx)) . (A.1w)
Ay =-=3 [ 2X H3(3G5’X +2XGs xx)+ H(6XG5 x — ZG4’¢O + 4X(—5G4,¢0X + G5,¢0¢0) + 3GTele,12 + 6GTele,¢0Tvec - 4GTele,¢0T)

+2HGo(3G, x +6X Gy xy — 3Gs g, — 4XGs g x) + $0(Gax = 2Gs 4 +2Gy g g0 + Gretex — Gretegyr,) | (A.1%)
Az =3 [2XGs x —2Gy 4 —4XGyy x + Greler, + 2H 3XGs x +2X°Gs xx — 9Greler, . 1, + 6Grele 1) + 2X Grele x1, + HPo(4G x

+8XGy xx —4Gs g4, —4XGs 4 x +3Greie 1,1, = 6GTele XT,q, + 4Gele xT) | - (A.1y)
Ang = _% (Gox + Grele.x) + Ga gy = @QH +3H?)(Gy x = Gs ) = 2H$(Gs x + XGs x x)(H? + H) = (g + 2H $o)(G3 x = 3Gy g x)

+ H*(5X(-2Gy xx + Gsgox) — 2X2(G5,¢0xx +$oGs xxx) + 2Ho(—HGs x —3¢0Ga xx +2¢0Gs g, x + X(=2Gy 4 xx

+ G5 podox ~ HGs xx + <150(Gs,¢0xx —2Gy xxx)) — X(G3 4, x — 2G4 ppox T 2HQG, xx - Gs gox) + oGy xx — 2G4 poxx))- (A12)
Ay = % [ ~6H*X(3Gs g x +2XGsgxx) + Gogpy + Grelegopy + 3H2Gu g4, = Greleyr,) = 3Hbo ( Gagyx = 2G3,494, +2X G g9 x

—4XGy g p0p0x + Crelegyx + Oele.gopyl, + H@Gs gy x +8XGy g xx —4Gs g g —4XGs g4 x +3Grele g1, 1, — 0GTele o XToee

+ 4Grele g xT) ) —4;0(62,¢0X —2G3 404, t GTele.gyx) — 6H¢0‘50(G3,¢0x = 3Gy gogox + X(G3 g, xx — 2G4 g09,xx) + Crelegyx1,)
+ 3H(4Gy g, + 2X (=3G9, x +6Gi o9, x + Ts.ggsy + 2X(“2Gu g xx + Gs.pyyox) = 301elegy1, ~2HBXGs g x

+ 2X205,¢0XX = 9G el gy Tyee Ty + OCTele T 1) — 2Gagyx B0 + 2Gs gy + 2X(=8Gy g x x +5Gs g4 x +2X(=2Gy 4 xx x

+Gs 3.60xx) — 3Gtele gy 1,1,)P0) + 2X (=G g 40 x + G gopote — OTelepydox — 3H G3.4x = 2Ga g 30x + Orele.pyx,)

= $0(Gagyxx = G3 gygyx + Crele.goxx)) = 2H> P0G 5 x = 9Gs 540 + 3P0Gs g x + X(18Gy 4 xx = TG g g x +2XGs g 4 xx
+(7Gs g, xx +2XGs g4 xxx)o) | » (A.1aa)

1 .
Azs = 5 (Gox + Gretex) = Gagy + X(Goxx = Gagyx + Gretexx) + 3Hbo(Gs.x = 3Gy gy x + X(G3xx = 2G4 4, x) + Gretexry)

12
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: 3
+ H$o(3Gs x +TXGs xx +2X>Gs x x x) +3H*(Gy x — Gs 4 + X(8Gy xx — 5Gis 4 x) +2X*2Gy x xx — Gs gy xx) + 5 Grele.ty,)- (A.1bb)
Furthermore, the coefficients of the gauge invariant variables for the scalar quadratic action (54) are the following
Ay = X(Gyx = 2G5 4 + XGrele x) +2X* (G xx — G3 gy x + Grelexx) — YH Grelerr,,, + 6X Hdy (2Gs x + XGs xx —5Gy 4 x

—2XGy g xx +2Grele x1, + SH Gs y ) +6H ( =Gy + Grele + 1XGy x +4X Grepe x7 + 6X(=Gs 4 + Grele 1,1, = Gele xTye.) )
+6X>H*(4(4Gy xx + XGy xxx) — 9Gs 4 x ) + 2H> X*(136Gs x x +2X oG5 xxx ) + 3HPo(Grete.r, —2Ga g

—-6H 2(6GTele,Tvec L~ 4GTe1e,T12)) +18H* (9GTele,Tvechec - 12Greie 7 + 4Grelerr) — 12X ’H 2G5,¢UXX ; (A.2a)
- 1
Ay = § (9GTele,TVec + 6XGTele,.l3 - 1())(GTele,.l5 + 4X(XGTele,.l6 - GTele,Jg)) 4 (A.2b)
- . X
Ay =2(Gy = X(¢Gs x + Gs g,) + 2Grele 1, — GTeler) + 5 (4(X Grele, s, — Grele, sy = 3GTele.s;) = 10X Grele g, ) » (A.20)

Ay =6(XQ2Gyx — Gs ) — Gy + Greter) + 6Ho(XGs x + 6Greterr, = 9Grele 1,01, ) + 9(X Grele 1,1, = Grele 1, + 2H*OGreler, . 7

vec vec ! vec

- 12GTele,TTw_.c + 4GTele,TT)) > (A.2d)

o . ) 1 .
As = 2 (GZ,¢0¢0 + GTele,¢o¢0 — %o (stfi)ox + GTEIE@OX)) +3H (G4~¢0¢0 - EGTele'd’OIZ) + ¢OGS’¢0¢0 +X ( _Gz’¢°¢ox - GTEle’¢0¢0X

+ G3. 4,000 ~ 3H (GS,quX — 2G4 gpgox t+ GTele,¢0X12) - ¢y ( Grgoxx — G3g,00x T OTelegyx x )) +Hd, —% (GZ,quX

—2G3 404, T OTelegpx + GTele,¢0¢012) +H ( —6Gy g x +6Gs54.0, — %GTele,dJOIzIz = 6GTele, gy xT + 9GTele gy X T,ee )

= 360(Gspyx = 3G gy + Greteaoxry) + 3X (=Gagugnx +2Gagopopox + H (~4Ga gy xx + 2G5 gygx) + F0(=Gagyxx

+ 2G4,¢0¢0XX)) ] +3H? [ 2G4 4090 ~ %(GTele,(ﬁolz +PoGretegyr,1,) + H (=6Grele gy11, + 9GTelepyTyecty) + Do ( —Cagyx + Cs gogy )

+ X (=3G5 g x + 6Guy g g0 x + Gs pogoso — 3HGs gy x = 8B0Gagoxx + 5B0Gs gogox ) + 2X2 (2G4 g s0xx + Gs pogodox

— HGs g xx = 260Gy gy xxx + $0Gs. 409 x x) ] —-H¢, [ 3GGygyx = 3Gs.gyp, + P0Gsgox) + X (18Gy g xx = 1(Gs g 40 x

= GG pyxx0) +2X* ( Gs gygyxx + doGs gy xxx )| -3X H* (3Gs g, x +2XGs g, xx ) (A.2¢)
Ag = % [ Gyx = 2G3 4, + 2X(Grete xx + Gaxx — G3,gyx) + 6HPo(Gs x + H*Gs x = 3Gy 4 x —2XGy g xx + Grelex1,)

+2X Hdy(2Gs xx + THGs x x) + Grele x +6H ( Gy x +4X(2Gy xx + XGy xxx) = Gs gy — 5XGs g x —2X>Gs 4 xx )

+4X2H §oGs yyy + 9H Gty 1, ] , (A.2)
A; = —% (Gox + Gretex) + G gy + BoQ2X Gy g xx +3Gag x — H*Gs x — Gy x — XG5 xx) + 5SXH*(Gs 4 x — $oGs xx — 2G4 xx)

+2XH¢o(—HGs xx = 2h0Gy xxx = 2Gag,xx + $Gs g, xx + Gs goppx) — 2XH*(HoGs xx + XdoGs xxx + XGsg,xx)
+3H(Gs g, — Gy x) +2H(Gs = Gy x) + 2X H(Gs 4 x — 2G4 xx) + 2H (=G5 x — (H* + H)Gs x — 3Gy xx + 3Gy g x

+2¢0Gs px) + XCGy g g0 x = G3.90%) » (A.29)

_ 1 )
Ag = §a2 [ X (4Grele g, + Grele, 5 + 3GTele1,1,) =~ 3GTele T, + OH ( HOGTele T, Ty, = 12GTele 1Ty + 4GTelerT) + $0(=3GTele 1 1

+2Gtelerr,) )] , (A.2h)
Ay =3 [ =12H[9G el 1, Ty +H(=3Cele 1T, + Grelerr)] + 2HI[2G + 4X*(=2Gy xx + Gs g x) + 3Grele1,. = 2GTeles + 2X (=4Gy x

+3Gs 4, = 3Grele 1,1, + 3Gele xT, o, — 2G1ele x1)] = 2H>$0(5X G5 x +2X*Gs xx = 21Greler, 1, + 18Grele 1,) — Bol—2Gia g,

+ Grele,r, T 2X(G3 x — 2G4 4 x + Grele.x1,)] |. (A.21)

.2 . .
A= 3 [ 18(Gy + Greler,o, = Greler) + X(=36Gy x + 18Gs 4 + 4Greie s, — 4X Grele s, + 10Geie 15 + 3Grele, s, — 18HB(Gs x) |, (A.2))

Tvec
A1 = Gagy + Gretegy + OH[Ga g, + X(=4Gy gy x +3Cs gy, = 4X G gy xx +2XCs 4030 + 36ele gy Tree = 207elegr] = 2X (Gagyx

= G gy + Grelegyx) = 2H X bo(5Gs g x +2XGs g xx) = 6Hdo[=Ga g4y + X (G g x = 2Go gy g x) + Crelepo 1+ (A.2K)
Ay == [ H30XGs x +40X>Gs yx +8X’Gs xxx — 54Grele 1, 1, + 36Greter1,) + 3H[-2Gy 4 + Grete 1, +2X(3G3 x —8Gy g x

+2X(Gs xx = 2G4 g xx) + 3Grelex1,)] + 6H Go[3Gs x + X(12Gy xx +4X Gy xxx = 1Gs 5 x —2XGs g xx)

—3(Gs g, — Grele.iy1, + GTele.xTyo,) + 2GTele.xT] + $0lG2 x = 2G3 4 + Grele x +2X(Go xx — G3 g x + Grete.xx)1 | » (A.2D
A3 =2Gy 4, —2X(Gs x + H*(3Gs x +2XGs xx) — 2G4 4 x) — Grete,, — Ho (4G x — Gs g + X(2Gy xx — Gs 4. x)) + Grele sy ) » (A.2m)
A= a% ’ (A.2n)
Ajs = 3¢50(203,¢0 = Gy x = Grelex = 2G4 gy¢y + GTele,¢012> +6H ¢, ( 3(Gs g, — G4 x) +2X (2G5 4 x — 3Gy xx) ) +3H(ZG4,¢0

+4Grete gy — 6GTele gy T,n. — 3GTele,,2) +6XH ( 25Gy g, x — Gs gog) = G x + H*Gs x) ) —12X2H3Gs yx » (A.20)

Ay = 3(2XGs x - 2Gy g, + GTele,lz) +6H¢)(2G, x - 2G5 4, — 3GTele xT,

Vi

e b 2Grete xt) + 6X (GTele,)(l2 - 2G4,¢Ux) +9H PoGrele, LI,

13
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+ 12X Ho (2G4 xx — Gsgx) + 6H2(6GTele,T12 — 9Grele Tyee1, T XG5 x + 2XG5,XX)> ) (A.2p)
Ay = 4H$y(Gs g, = Gax = $oGsx = X(doGs xx + Gs,gx)) +4do(XGs g x + Gs gy = Gax —2XGyxx) +4Gy 4 — 2Grele 1,

—4XHGs x +4X(Gs g4, = 2Ga g x — H*Gs x) + HoGrele s, - (A.2q)
Ajg=-a [ 4(Gy = Greler + X(Gs 4, — 2G4 x)) + 4HPo (=X Gs x + 9GTele o1, = OGTelerr,) + 6(GTele . = X GTelet 1, )

+ 12H? (12Grele 17, = 9GTele Tyo Tyoe — 4GTelerT) ] ) (A.2r)
Ay =-a [ Bo(Ga,x = 2G3 4 + 2G4 g4y + Grele.x = Creleyr,) + H ( 3Grele,r, = 2G4,y + 6GTelepyToee — 4CTelepyT ) +6H> G (Gy y — Gs4,)

+2X H (3Gs x + 6H$yGy xx — 10Gy 4 x +2Gs g 4 ) +2X H*(3HGs x + 2X HGs xx — 4G g x ) ] , (A.2s)
Ay =-a [ 2X (2G4 4)x = G3.x = Grelexr,) — Orele, +2Ga g, + HPy (4(Gs g, — Gax —2XGyxx + XGs gy x — Grelext)

+ 3G ele X7, = Oreleyy) ) +H? (6BGrele o1, = 2G1elers, = XGs.x) = 4X*Gs xx )] . (A.20)

For the quadratic vector action (58) we have the following coefficients
C = % [2GTele,TaX +3[3(Gy = Greter) + X(=6Gy x +3Gs 4 + 2Gele. sy + 0Grele sy + 3GTele.s; ~ 3H¢;’Gs,x)]] , (A.3a)
C =Greler, T IX_S [—ZGTele,J8 — 5GTele, g5 — 6Grele sy +2X GTele,Jﬁ] > (A.3b)
C3 =2(Gy = Greje ) + X[-4G, x + 2G5 4 + 4GTele,J8 + GTele,.15 - 2Hq5G5’X] s (A.3c)
C,= $[3X(4GTele, 110 +3Grele ;) +4Graer, 1. (A.3d)
Cs = GreleT,o T %[—20'&1&18 = 5Grele s5 + 3Grele sy T 2X Grele i1 - (A.3e)
Co= %[wTele,T‘“ +9(Gy — Greter) = 3X(6Gy x —3Gs y +4Greie s, — 6Grele s; +3HGGs x)]. (A.3D
G = —$[9(G4 = Greler) = 2Grele, +3X(=6Gy x +3Gs 3 = 3HPGs x + Grele, s, + 3Grele.ss)] - (A.38)
Gy = QSGTele,Iz +2H <_3GTele,Tvec + 2GTele,T) , (A.3h)
Co=2(Gy+ X (-2G,x +Gsy— HGs x)) (A.30)
Cio= é (18 <_GTele,T\,ec + GTele,T) +X <_4GTele,J8 +4XGrele, s, — 10Grele s — 3GTele,J3>) ; (A.3)
Ci = —g (3X (GTele,J,O + 3GTele,J5> —2Grele,, — 9GTele,T) . (A.3K)
While the coefficients C; — G, for the gauge invariant quadratic vector action (59) are

Ci = % (9GTele,Tvec + X(6GTele s, — 10GTele 45 +4X Grete g — 4GTele,J8)) , (A.4a)
é = é (9(G4 — Graier) + 2Geier, + XOGsy — 18G, x — 12Grae s, + 18Grae s, — 9HPGs X)) , (A.4b)

~ . . 4 . . . . .
C3 = _2XH¢GTele,[2J|0 - 6XH¢GTele,1215 + gfIquTele,Tax I, + 6H¢GTele,T12 - 8XHHGTele,TJ]0 + 12)(IJIJGTele,T‘,ecJIO

16 . . .
+ T HHGreerr,, —8HHGrele 1,

—24XHHGroo 5+ 36XHHGT€1€,TM 5+3

—-36HH GreleTT,,, T24H HGrelerr

Tyec

. ) 4 . ; 4 8
—2XH¢Grele,1,5,, ~ X HPGrele 1,45 + 3H $Grele .1, T OHOG1ele 11, — 3XH Grele.s, ~ 4X HGrele g5 + o Grele T,

- 6HGreer,,, + $Crele 1, — %Xq'SGTelw o = %Xd;diGTele,X To ~ %a’deGTe]e,Jm = 2X$Greie ps5 — 2X bPGreie x 15 — 209Gele.ss

* g‘ﬁ(iSGTele,XTax + quGTele,qBTax +20¢Greie x1 +20Grete g + 8H Grele - (A4
Cy= _% (9(G4 = Greler) = 20tele,, + XG5y — 18Gy x +3Crele s, + IC1ele.ss ~ 9H¢G5’X)) ’ (A4
Cs= % (ISGTele,TveC +4Grele 1, + X(4GTele gy — 4X Gele s — 8GTele,s5 + 3GTele,s; — 00Tele,s 10)) ’ (A4e)
Co= é (4GTele,TaX + X(9Grele, 5 + 12GTele,J10)) ) (A4
e, (A.4g)
Gy = % <18GTele,Tvec — X (6Grele,s; + 5GTele,s5 + 2GTele sy — 2X GTele,Jé)) ; (A.4h)
Co= % (9(G4 = Greler) + 2Grele,, + X(9Gs 4 = 18Gy x + 6Grele s ) + 9Crele,s; + 18Grete sy = IH PG5 x )) : (A4

Appendix B. Gauge choices

Section 3 provides a system of equations for an SVT decomposition without imposing any gauge choices. Furthermore, it was shown that
the perturbation of the BDLS action can be expressed in terms of gauge invariant quantities given by Eq. (53). Alternatively, through the gauge

14
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transformation in Eq. (51), the gauge invariant quantities {c,4;, h;;} are identified but non-gauge invariant variables dependent on each other can
be lumped together to form the following groups: {5¢, ®,w, 8}, { B, E}, {v;, w;, V;}. A gauge choice is done by setting one from each group to vanish.
Here, we list some of the commonly used gauge choices within the scalar and vector sectors.

All gauge choices can be obtained through the original action perturbations given by Egs. (52), (55), (58), (61). These calculations cannot be
done through the minimized gauge invariant action explored in Section 4, as certain gauge choices may result in undefined regions with a null
denominator. We present a simplified version of these results obtained through integration by parts and collecting like terms.

B.1. Scalars

In the scalar sector, we explore the flat, unitary, Newtonian and synchronous gauge. It is known that in the synchronous gauge, residual gauge
freedom remains due to spatial coordinate transformations that are time-independent. These correspond to arbitrary spatial translations or mode-
dependent redefinitions of spatial coordinates. To fully fix the gauge, additional conditions are required, such as aligning the perturbation centre
of mass with a specific fluid or setting one metric potential to zero. Properly addressing this residual freedom is crucial to avoid spurious results
and ensure consistent interpretation of physical observables in theoretical and observational cosmology [75-79].

B.1.1. Flat gauge
The flat gauge is characterized by y = 0 and E = 0, for which Eq. (52) simplifies to

. V2 2 V2 2 2 DdV? 2
S§13t=/dzd3xa3 [5¢<F1<1§—F27ﬁ +F3¥>+5¢<F4¢—F57ﬂ +FG¥ —sz ‘D> - F— 4 +F8¢Va B + Fy®?

2

a
2 2
+ Figo¢* + Fy, (V‘Sf)z +Fp, (V22 + F13<V/§ - E) + F1460* ] (B.1)
a a a
where
Fy =¢, ( X <_2GTele,XX -2Gyxx + 2G3,¢0x) = Grelex — Go.x +2G3 4, ) +H ( X ( —18Grete x1, — 18G5 x +48Gy 4 x ) —3Grele,1,
+ X2 (24G4’¢0XX - 1263‘”) +6Gy g, ) +HGy ( ~18Grees,1, = 12Grae xr + 18Grae xr,, + X <12G5’¢0XX - 24G4’XXX)
+X (4265%,( - 72(;4“) —18Gy x + 18Gs 4 ) +H’ (=36Greie 1, + 54Grele, . 1, — 8X G5 xxx —40X°Gs xx —30XGs ) , (B.2a)
Fy =2G, 4 ~ Grotes, - X (203,)( - 404,%)() - qu'O(GTeleJ3 +X (SGMX - 405,4,0)() +4G, y - 405,%) — H?(4X2Gs xx +6XGsx) , (B.2b)

F=F+ HqSO <_3GTele,12 I + GTele,.l3 - 4GTele,XT + 6GTele,XTvec) - 6H? <ZGTele,T12 - 3GTele,T\,eClz) - 2)(GTele,Xlz ’ (B.20)
Fy == 2XGrelegyx + Grele gy = 2XGrgyx + Go gy +2XG3 0 + HeoX ( ~6Grele. o1, ~ 60X G3g)x + 12X Gy gy x +6Gy g0, )
2 2 2
+HX ( —12Grele g1 + 18GTele gy Tee ~ 24X Gugoxx — 24X Gy g x + 6Gy g +12X°Gs g o 5 + 18X G5 g o0 )

+ H3¢yX (—A,XZGSKI,0 xx = 10XGs g X) ) (B.2d)
FS :Fﬁ -H ( H <6XGTele,lzJ3 + 12GTele,le - 18GTele,TVeC 12> + qg() <3GTele,Iz I + 2XGTele,XJ‘; + GTele,J3> + 2GTele,lz + 2XGTe1e.¢OJ3

- 4GTele,¢0T + 6GTele,q50Tvec ) _H2¢.0 ( 3 ( 4'I.{GTele,Tlg - 6HGTele,TvecJ3 + qSIOGTele,Izh ) +20Tele,./3 ) _¢.0 <3HGTele,lzlz + HGTele,J3

+<5OGTe1e,x12> > (B.2e)
Fo =ho(~Gretegy1, + GTele.x + Gax = 2G3 gy +2Gs g4 ) + H ( 3Grele.1, = 4Gele g1 + 60TelegyTro. + X (603,)( —20Gy 4o x + 4Gs,¢0¢0)
~2Gug, ) +Hho(X (126, xx —8Gs gx ) +6Gyx = 6Gsgy) + H* (4X>Gs yx +6XGsy) . (B.20)

Fy =¢o(~Grater, + X (4G4’¢0 .- ZG3’X) +2Gyg,) + H (~4Graer +6Greter,,, + X (86514,0 x — 16G, X) r X (12054,0 - 16G4’X)
+4G, ) +H?$y (—4X>Gs xx — 10XGs x) (B.2g)

ec) + Hd, (36GTe1e,Tl2 — 54Greler, 12) + H’ (_144GTele,TTveC +48GTele T

vec

Fy =F; + XH(IZGTele,IZ I, t 8GrelexT — 12GTele xT,

+108Grele 1, Ty, ) + 2X P0Grele xT, » (B.2h)
Fy =X (GTele,x +Gyx — 203,¢0) +X? (ZGTele,XX +2Gy xx — 203,4;0);) + Hd, ( X (IZGTele,Xlz +12G;5 x — 3004,¢0x) + 3Grele. 1,

+ X2 (603“ - 1204,%“) —6G, g ) +H? ( X (36GMEJZ,2 +24Gege x1 — 36Grate x1,,, +42G4x — 3605’%) +6Greer

= 9Gder,, + X (24Gy xxx = 12Gs gyxx ) + X2 (96Gs xx = 54Gs gy x ) = 6Gy ) +H o (72Geterrs, = 108G eter, .1, +30XGs x

3 2 4
+4XGs xxx +26X°Gs xx) + H (_216GTele,TT + 72Greterr + 102G1ele 1, T,

vec vec vec) ’

(B.2i)
Fy =5 (_3HGTele,¢012 = $0Gele gy x T Orelegody — G2.40x Po + Gogopy + G306, P + 6HG4,¢0¢0) +X ( —3HGrele, gy x1, = P0Crele gy x X

= Gretegyiox + Gaaopoty ~ Croxxbo = Gagysox = 3Gggx H + G gygxbo + 6Gagypx H ) +Heo (=5 HGrele gy 1,1,

) ) . 3 3 3Go g x .
= 6HGrele g x1 + IH Grele gy xTyoe ~ 3P00Telepo X1, — 5 Otelegopoly = 5 OTelegyx =~ — "=+ X (=3G; 4 xxBo — 3G3 44y x

+ 6G4V¢0¢UXXJ>'O - 12G4,¢0XXH +6Gy g g0pox + 6G5,¢U¢OXH ) —3G3‘¢0Xq§0 +3G3 4.4, — 6G4,¢0XH + 9G4‘¢0¢0Xq'50 + 6GS’¢U¢0H )
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. . 9 .. 9 )
+ H? ( =18HGrele g 71, + 2TH Grele gy 1, 1, — §¢OGTele,¢01212 - EGTele,dmlz + X (=9G4, x —24Gy 4 xxPo + 18G4 g 5, x

= 9Gs gy x H + 15Gs g4 x b0 + 3Gs gy, ) + X (=12G gy xxx b0 = 12Ga gy xx = 6Gs gy xx H +6Gs g4 x x o + 6Gs g g x)

= 3Gy 4,x B0 +6Gy g4, +3Gs gyg,b0 ) +H Hey ( X (=18Gy g xx = 7Gs gy xxbo + 7Gs gy pox ) = 9Gagox + X (—205’(,,U xxxPo

~2Gs gogyx ) = 3Gs gy x + 9Gs gy, ) +H* (<6X7Gs gy xx ~9XGs gy ) (B.2j)
Fy=- %(GTele,X +Gyy) — Gsxdy + Gig, +X (—Gs,quyo —G3g0x — 4Gy yx H + 2G4,¢0xx<150 +2Gy pog, + 2G5,¢0XH)

+Hey (2G5 5+ X (‘404,xxx bo = 4Gy g xx —2Gs xx H +2Gs 4 x xbo + 2G5,¢0¢0x) = 6Gy xx o +6Gy 4 x —2Gs x H

+4Gs g By ) —2Gx H + 3Gy g x Gy +2Gs 4 H + H (X (—10(;4’“ —5Gs xx o + SGS%){) — 3G, x + X? (2G5 x xx b0

—205,¢0XX) - Gsxdo + 305,4;0) + H? (=2XGs yx —2Gs x) by (B.2k)
Fiy =§ (3GTe1e,12 1, + Grele g5 + 4GTele,J8> = Grele Ty, + Hebo (4GTele.le - 6GTe1e,Tveclz) + H? (_24GTele,TTvec + 8GrelerT

+18Grele Tyo Tye ) ) (B.21)
Fi3 :% <9GTele,Tvec +X <6GTe1e,J3 — 10Gree 55 — 4GTele,J8) +4X 2GTe1e,J6) , (B.2m)

1 3
Fiy=3 [ Gox +2(X(Gyxx = Gsgx) = Gsy) +6H? (G4,x = Gs g+ X(Gyxx = 5Gs 4x) +2X> 26y xxx — Gs gxx) + EGTelerlz)
+ Grelex +2XGreexx +2H?¢ (3Gs x + X(TGs yx +2XGs xxx)) + 6H (Glx —3G4¢x + Grelexr, + X(G3 xx — 264,¢XX)) ] , (B.2n)

where F|, and F;; are purely teleparallel coefficients. Moreover, difference between coefficients of § and B quantities stem from the teleparallel
contribution of the BDLS action. For this case, only 6¢ and g appear to be temporally dynamical with @ and B being the auxiliary modes.

Following a minimization through obtaining field equations for auxiliary modes @ and B, and diagonalization of the kinetic matrix, the final
action can be given by

3 ~ s ~ A ~ A ~ ~ . ~ . ~

st _ /dt i [ <F1 _ %F2> w2 4 <F3 - %F4) w2 4 <F5 - F7> VP, + (Fg — ) ¥y, + Fg¥2 + R ] , (B.3)
(2m)2

resulting in two propagating DoFs where coefficients F, are presented in Ref. [80]. The number of DoFs for subclasses given in Table 1 is remains

the same in the flat gauge.

B.1.2. Unitary gauge
Next, we consider the unitary gauge where the assumptions of ¢ = 0 and E = 0 are implemented in Eq. (52), resulting in

‘ ) V)2 2 V2
S;Jmtary _ /dt Bxd |:U1(2WM _ 3u.lz> + Uz( v) + U3(D2 + 2U4d)<3li/ _ U) + USID_ﬁ
a a a

a2

2 2 2 24 V2B 2
+ Uﬁ(w¥ +a>v—2“'> +U7<(V‘D) + (Vﬂ')2+2(pz ﬂ) +U3( ) +U9y/V2ﬂ] , (B.4)
a a a

2 2

where

U, =2G4 — Greler +3Gr1eler,,, + X (‘404,)( +2Gs 4, — 3GTe1e,1212) +Hd, (—2X Gsx = 12Grelerr, + 1SGTele,TveC12>

+ H2 <_24GTele,TT + 720Tele,TTvec - 54GTeleTvechec) > (B.52)
4 X -
U2 =2G4 - 2GTele,T + 4GTele,Tvec + §X20Tele,16 - 3 ( 205,4)0 + 2GS,X ¢0 + 12GTele,J_; + 1OGTele,.I5 + 4'GTele,.Ig ) s (B'Sb)

Us =X (GTele,X +Gox — 2G3,¢0) +X? (ZGTele,XX +2G xx — 2G3,¢0x) + Hdy (X (IZGTele,X,Iz +12G3 x - 30G4,¢0x) + 3Grele,1,

X2 (663” - 12G47¢0XX) - 6G4’¢0) + H? (X (36(;“18_,,2 1, + 24Grqe x1 — 36Graie 1, +42G, x - 36(;5,%) +6Greer

~9Grele T, + X° (24G4,xxx - 12G5,¢0xx) +X? (96G4,xx - 54G5,¢0x) - 6G4> + H ¢, (72GTele,T12 — 108Gele 1y 1,

+4X2Gs xxx +26X>Gs xx +30XGs y ) + 18H* (=126 rr, . +4Greterr +9Greer, 1, ) - (B.5¢)
U, =¢o (X <_GTele,X12 -Gy + 2G4,¢0x) - %GTele,lz + G4,¢0> +H <X (—6GTe1e,1212 — 4Grele xT + 6GTele X1, — 8Gax + 6G5,¢0)

~2Greter + 3Greler,,, + X* (4GS,¢0X - 804,)()() + 204) + H ¢ <_180Tele,le +27Grale 1, 1, — 2X*Gs xx — SXGS,X)

+H’ (720Tele,TTveC — 24G1elerT — 54GTele,TvecheC) , (B.5d)
Us =2H [2G,; +2X (4G, x +3Gs 4+ 2X(=2Gy xx + Gs yx)) + 3Grete,o, = 2GTeles — HXP(5Gs x +2XGs xx) | —h(—2Gy
+2X(G3 x — 2G4 4x) + Grele 1) » (B.5e)
: 1 8
U6 =4 <GTele,T - GTele,Tvec - G4 + XGSX H¢0> - §X (6GTele,J3 + 2OGTele,.ls + 8GTele,Jg - 7204,){ + 3605,450) + §X2GTele,16 ’ (B'Sf)
X 4
U; =Grelet,. + 5 (6GTe1e,J3 —10Gee s, — 4GTele,Jg) +3X *Grete g » (B.5g)

X : 2
Ug == Grele e T 3 (3GTele,1212 + Grele,s5 + 4GTele,J8) + Hd, <4GTele,T12 - 6GTele,TVEC12) +H (—24GTe1e,TTvec + 8GTele
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+18GTele,Tvechec> s (B.5h)
17T - .
U9 :§ [ ¢() ( _18GTele,12 +X <¢0 <_6GTele,XJ3 - 2OGTele,)(l5 + l6GTele,J(j - 8GTele,XJx) - 6GTele,¢0J3 - 20GTele,¢OJ5 - SGTele,d;ng)

+do (_6GTele,J3 —20Grele s, — 8GTele, g +36GTele.xT — 36GTele,XTm) +X? <8¢6GTele,X16 + 8GTele,¢016) + 36Grele, ¢y

— 36GTele ¢y Tyee )+H (H (X (_72GTele.TJ3 + 108Gele 100 73 — 240G Tele 75 + 360GTele 1, 75 — 90GTele T, T+ 144GTele,TvecJ3>

ecJ3
+X? (96GTele,T.16 - 144GTele,TVEC16) — 1080Gele 17, +432Grele,rT + 648GTele T, 0 Tyee ) +X (¢0 (_18GTele,12J3 = 60Gete, 1,75
_24GTele,12J8) — 12Gtele,s; — 40GTele gy — 16GTele,J8) +36Greler,, + X <24<50GTele,12J6 + 16GTele,J6) +dp (108GTe1e,T12

_108GTele,Tvec[2) ) +H¢.O ( X <_ISGTele,[2J3 - 60GTele,]215 - 24GTele,Ing> + 24AXZGTele,lzJﬁ + 108GTele,T[2 - lOSGTele.Tveclz )] . (B.51)

for which {U;, Uy, Uy} are coefficients arising from the purely teleparallel sector of the gravitational theory. The unitary gauge has been favoured
in scalar-tensor theories, so the standard Horndeski result given in Ref. [47] can be obtained by taking the limit Gp. — O limit. First and
foremost, the coefficients {U;, Ug, Uy} completely disappear, eliminating in particularly the contribution proportional to k* (upon applying Fourier
transformation). Next, in metric-based theories, there is no distinction between the off-diagonal terms since the metric is said to be symmetric. The
relationship between tetrad and metric given by Eq. (1) indicates that # and B can be combined to have a single off-diagonal variable B = —B + .
Provided these modifications are implemented, the Horndeski gravity result obtained in Ref. [47] is attained. For the general BDLS action, the final
action is of the form

i 3 ~ s ~ 2 ~ s ~ ~ . ~ . ~ .
sumiary _ /dt & [ (Ul _ %Uz) P2 4 (U3 - %U4) w2 4 (U5 - U7) VP, + (U — ;) ¥, + U2 + 02 | (B.6)
(2r)2

where the procedure and details of coefficients U, for i € [1,9] have been included in Ref. [80]. In-line with the gauge-invariant and flat gauge,
only two dynamical modes propagate following a diagonalization of the kinetic term.

B.1.3. Newtonian gauge
The Newtonian/longitudinal gauge has been commonly used in teleparallel gravity, where E = 0 and f = B. In Ref. [71], the gauge choice was
further restricted by imposing g = 0, leading to potentially overfixing the gauge. The action transforms to

) 25\ 2 .
SNewtonian / drd®xa’ [Al <¥> + a% ((Ay + AV + (A3 + ARV + (Ay + A V250 + (A5 + Ag)V26) + AIO%VZW

- i\ 2
\% 4 V25 .
+ % (A7 V2D + A Vi) + A (713) +@ (A14_2W + A5 + Asbd + A17_2¢ + A185¢>
a a a

VyVégp
a2

Vo \2 vy \? . : . vég\®
o (Z2) + 4@ + Ay <7‘”> + Ap® + Ay +A245¢W+A255¢W+A26<7¢>

+ Ay 697 + Azgaepz] . (B.7)

with very minor modifications to the original action (52). Here, {6¢, #,y} are all dynamical modes and only @ is non-dynamical. Varying with the
latter mode and diagonalizing the kinetic matrix by relabelling the dynamical modes in terms of new mode {¥;,¥;,¥;}, the action becomes of the
form

3

; di3 - - - - - O O - -
Spewtonian / dr [lef + NW2 + N2+ (N, + Ng®3 + NoWs + No# ) + W, (N3 + Ng¥s)
(2n)2

N2+ N2 N | (B.8)

where coefficients N; for i € [1,12] are detailed in Ref. [80]. The longitudinal mode suggests an additional dynamical scalar mode for the general
BDLS model, but further investigation would be required as discrepancy in the number of DoFs does not occur for widely used subclasses of BDLS.
For the particular case of f = 0, the number reduced to two.

B.1.4. Synchronous gauge
The synchronous gauge is obtained by setting @ = 0 and f = B and very popular in numerical studies while it is the one mostly used in Boltzmann
solvers like CLASS and CAMB. The action for the gauge choice reads

28— aE)\’ -akE . .
sSynehronous =/dtd3xa3 [Al (V ¥ “E)> LY ; ) (AV2r + A, V260 + AsV260) + L (AgV25 + AgV260 + A, V2
a a a

. . 2 2
. \% \Y% . VyVé . .
+A V) +A11:%V2W+A13 <7ﬁ> + Ay <Ty/> + Api® + Ay Waz 2. A6y + Aysodys

2
+ A <@> + A275¢2 + Azs&ﬁz ] ) (B.9)

showing very minor modifications from the action given by Eq. (52). Here, all modes {6¢,8,w, E} are dynamical, as {®, B} are typically the
auxiliary modes in the system but have been eliminated through the gauge choice. Since mode E appears to have at least a first order derivative,
a relabelling it as £ = E allows treating € as an non-dynamical mode. Thus, the final action is of the form

S 3

3
gSynchronous _ / a4k [ S\ + S + W) (SyWy + S5y + Sy + SpW3) + W5 (Sy® + Sy ) + S10¥7 + 8,92 + S92 |, (B.10)
2n)2
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with coefficient details included in the supplementary document of Ref. [80]. Similar to the longitudinal gauge choice, the substitution of g = B
yields an extra scalar DoF from the rest of the gauge choices. While further setting g = 0, the two dynamical modes are obtained but may lead to
an overfixed gauge.

B.2. Vectors

The vector sector contains a gauge invariant mode »; and the remaining modes {v;, w;, V;} can be expressed as a linear combination of each other.
The gauge choice V; = 0 is favoured as it eliminates contributions related to the Levi-Civita tensor associated with the pseudovector. Regardless,
all possible gauge choices are presented here.

In the case of v; = 0, the action transforms to

Su=— /dz dxd [% ((V2W)? + (V)2 +2(V X V)(V2W)) + G, V (V +2Vx v) +Cy (VW) + C5 0 + Cg (V“) + =3 ((Vu)(Vw)
+ V(V Xu)) + cgm So ((Vu)(Vw) + V(V x u)) - %V (c“ (V xu) + —di (a2C1) (V X u)> ] (B.11)

such that modes {u;, w;,V;} are dynamical modes. In the other gauge choices, it was noted that v; is the only mode that behaves as an auxiliary
mode.
The gauge choice of w; = 0, followed by substitution of the equation of the auxiliary mode v; results in

= VV)? C4 . C3\ (Vu)? d
gwi=0 _ 33|, (V 2 _ 2, _ 2
% /dtd xa [ = +Cy4 4Cl Va+ | G ) a2 +Cs @)+ - (G Zdt (a*Cy) | V(V xw)

1 e
+Z(C“ Co= ¢ V(Vxu) (B.12)

for a total of two dynamical modes {u;, V;} provided C, # 0, noting a difference in the number of dynamical modes when compared to Eq. (B.11).
For the gauge choice V; =0,

Ve (w) G g\ (Vu)? 1d (Vu) (VW)
=0 /dtd3 [ <1 - 4—> Vw2 +( ¢ - é @ +¢ o+ <c8 =% (a2C10)> Ywivw)

a

[ ) (Vu) (Vw) ] ’ (B.13)

(69 ~Cot 2C, a

where now the two dynamical modes are {u;,w;} provided C; # 0. The latter two results, along with the gauge invariant analysis, suggests that
the gauge choice of v; = 0 requires further analysis within the BDLS framework.

Data availability

No data was used for the research described in the article.
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