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Efficient estimation of error bounds for quantum multiparametric imaging with constraints

Alexander Mikhalychev 1" Saif Almazrouei,? Svetlana Mikhalycheva ! Abdellatif Bouchalkha® 2

Dmitri Mogilevtsev ,! and Bobomurat Ahmedov

3,4

IB.I Stepanov Institute of Physics, NAS of Belarus, Nezavisimosti ave. 68-2, Minsk 220072, Belarus
Directed Energy Research Centre, Technology Innovation Institute, 9639, Yas Island, Abu Dhabi, United Arab Emirates
3 Institute of Theoretical Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
4Institute for Advanced Studies, New Uzbekistan University, Movarounnahr str. 1, Tashkent 100000, Uzbekistan

® (Received 19 November 2024; revised 28 December 2024; accepted 4 March 2025; published 21 March 2025)

Advanced superresolution imaging techniques require specific approaches for accurate and consistent esti-
mation of the achievable spatial resolution. Fisher information supplied to the Cramér-Rao bound (CRB) has
proved to be a powerful and efficient tool for resolution analysis and optical setups optimization. However, the
standard CRB is not applicable to constrained problems violating the unbiasedness condition, while such models
are frequently encountered in quantum imaging of complex objects. Complementary to the existing approaches
based on modifying CRB, we propose a practical algorithm for approximate construction of a modified Fisher
information matrix, which takes the constraints into account and enables accurate estimation of errors for
constrained problems by the standard CRB. We demonstrate the efficiency of the proposed technique by applying
it to one-, two-, and multiparameter model problems in quantum imaging. The approach provides quantitative
explanation of previous results with successful experimental reconstruction of objects with the spatial scale
smaller than the theoretical limit predicted by the standard CRB.
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I. INTRODUCTION

The problem of diffraction limit of resolution in imag-
ing was perceived and quantified more than a century ago
[1,2]. The first approaches to resolution quantification (such
as Rayleigh criterion) were based on formalizing visual dis-
tinguishability of small features. While being intuitive and
very fruitful in physics, the approach does not account, for
example, for the influence of the shot noise on the image
quality. Further, more advanced approaches based on Fourier
components transfer were developed [3]. Recent progress
in superresolution imaging [4-7] forced the researchers to
perceive the collected images (raw datasets) as quite ab-
stract sources of information about the investigated sample
rather than just visual replicas of it. Instead of measuring
the intensity of the light emitted or scattered by the sample,
superresolution techniques are based on the detection of pho-
ton coincidences [4,8—11], analysis of time-dependent signals
for fluctuating emitters [12—16], or scanning with localized
excitation of fluorophores [17-19]. Since the resulting image
is typically formed by elaborate processing of the raw infor-
mation, the approaches to resolution quantification are to be
tailored in the way suitable for taking that into account.

A powerful mathematical tool for quantification of the in-
formation content of various images (including both raw data
and the processing results) is the Fisher information (FI) [20].
It describes sensitivity of the measured signal (or processed
image) to variation of the sample parameters of interest. The
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Cramér-Rao bound (CRB) [21,22] connects FI with the errors
of sample parameters’ estimation for optimal analysis of the
acquired signal. The approach has been successfully used for
resolution analysis in quantum imaging of simple [23-27] and
complex [24,28] model objects, optimization of detection pro-
tocols [29-34], quantum light sources [28,34], and cumulant
order in superresolution optical fluctuation imaging (SOFI)
[35,36]. Roughly speaking, resolution of a specific quantum
or quantum-inspired imaging technique equals the smallest
size of the sample details, such that the input signal (image)
provides enough information for their reconstruction [34,35].

Despite strong success in applying classical and quantum
FI to theoretical investigation of quantum imaging, direct
exploitation of the CRB has important limitations when con-
straints are imposed on the considered problem. In particular,
the resolution experimentally achieved in Ref. [28] for mul-
tiparametric quantum imaging was several times better than
the theoretical limit derived from CRB without accounting
for constraints. A similar effect (reduction of the estimation
variance) was previously reported for experiments [27] and
numerical simulations [29,37] for the separation of two inco-
herent point-like light sources, as well as for the resolution of
a spectrometer [24].

The reason for those discrepancies is known from statistics
[38—41] and consists in the unbiasedness assumption, which
is used during derivation of CRB and, generally, becomes
invalid when physical constraints are taken into account. For
example, for a passive nonemitting object, the absolute values
of the transmission amplitude must be in the range from O to 1.
From physical point of view, constraints introduce additional
a priori knowledge about the sample, complementary to the
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information provided by the detected signal, and enable re-
construction of smaller features. Mathematically, constraints
typically lead to estimation bias [42], while biased estima-
tors can ensure smaller mean square errors than unbiased
ones [24,39,41,43,44].

Efficiency of CRB for resolution analysis on the one hand
and typicality of constrained problems in practical imaging
on the other hand motivate one to search for a way to restore
applicability of CRB to such problems. One of the avail-
able approaches is based on constructing the modified CRB
[38,40,41,43], which explicitly takes the bias into account
by incorporating its derivatives over the parameters of in-
terest. Such approach has been successfully used for simple
one-parameter models in quantum imaging and metrology:
estimation of the separation between two incoherent point
sources [27,29,37] and inference of the wavelength by a
spectrometer [24]. Minimization of the predicted estimation
error over the bias allows us to construct uniform (universal)
version of CRB [45-47]. The resulting trade-off between the
bias and the variance of the estimate can serve for resolution
quantification in biomicroscopy [48—50]. While the approach
is fruitful for derivation of general theoretical bounds on
estimation errors, its practical application to quantifying in-
formation content of particular quantum imaging methods
and setups can be cumbersome. Analytical calculation of nei-
ther bias gradient for a selected estimator, nor the optimal
bias seems feasible for a real multiparametric problem of
object reconstruction in quantum imaging [28], thus leading
to the necessity of time-consuming numerical Monte Carlo
simulations.

In the present contribution we propose an alternative ap-
proach, which, instead of rigorous bounds, provides only an
approximate assessment of the errors and resolution but can
be efficiently applied to multiparametric problems in practice.
The essence of the method is to make use of the corre-
spondence between FI and Bayesian probabilities [51,52], to
modify the probability distribution according to constraints as
it was done previously in our paper on quantum tomography
[53], and to map the new probability distribution back to
FI. The modification of the probability distribution can be
interpreted as taking the prior information encoded in the con-
straints into account. The resulting updated Fisher information
matrix (FIM) already effectively includes the information
about the constraints and induced estimation bias and can be
put directly into the initial unmodified CRB. We apply the
developed approach to multiparametric estimation problems
in quantum imaging and show that it is capable of explaining
and quantifying the resolution enhancement due to constraints
experimentally observed in Ref. [28]. It is worth noting that
the influence of the estimation bias on the predicted errors can
be much more pronounced in quantum imaging based on mea-
surement and analysis of photon coincidences (higher-order
field correlation functions) relatively to traditional intensity-
based microscopy, because FI tends to become singular if the
investigated object has dark (nontransmitting) areas. We pay
special attention to that issue and show that the case is still
covered by the proposed approach.

The rest of the paper is organized as follows: First, we
briefly introduce the main concepts from estimation and prob-
ability theory useful for further derivation and analysis of

the approach. Section III is devoted to constrained estimation
problems and the core procedures of our paper: regularization
and correction of FIM. In Sec. IV, we assess the efficiency and
accuracy of the proposed approach by applying it to several
model problems, ranging from a very simple one to practical
multiparametric imaging.

II. FISHER INFORMATION, PROBABILITIES,
AND RESOLUTION

A. Fisher information

The general purpose of measurements, including those
used in imaging, is to estimate physical characteristics of
the investigated system from the collected data [54]. For that
purpose, one typically needs to construct the theoretical model
of the signal S(@), where the vector § = {6,,} describes the
parameters to be inferred from the experiment. The actually
collected signal

Y=S0)+e¢ (1)

inevitably contains noise contribution € and, therefore, repre-
sents a particular realization of random variable(s). Statistical
properties of the noise can be formalized by introduction of
the likelihood L(Y|S).

The ability to reconstruct the parameters of interest from
the measured data and the resulting inference error are de-
termined by the sensitivity of the signal to the investigated
parameters. The sensitivity can be quantified by the score
function [20]:

al(Y[S(9))
20,
where [(Y|S(0)) = In L(Y|S(0)) is the log-likelihood.

The covariance matrix of the score represents the Fisher
information matrix (FIM) [20]:

Sp ) = (2

Foy = Cov(s,(8), 5,(6)) = E (BZ(YIS(0)) al(YIS(ﬁ’)))’

36, 36,
3)

where the symbol E denotes mathematical expectation over
the distribution of the random signal Y. Roughly speaking,
larger values of the FIM elements correspond to more infor-
mative measurements. If the signal Y takes discrete values,
Eq. (3) can be rewritten in the following way convenient for
direct calculation:

1 dL(Y|S(9)) dL(Y|S(0))

Fw =
! ; L(Y|S(0) 96, 90,

“4)

where the summation is performed over all possible realiza-
tions of the signal Y.

The significance of FIM is enhanced by its use in the
Cramér-Rao bound (CRB) [21,22]. If the parameters inference
algorithm yields an unbiased estimate @), i.e., its mathematical
expectation equals the true value of the parameters: E@®) =0,
the covariance matrix of the estimated parameters is bounded
from below by the inverse of the FIM:

Cov(8,0) > F'. (5)
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The matrix inequality A > B means that the matrix A — B is
positive semidefinite.

Equation (3) can be also rewritten as the expectation value
of the log-likelihood curvature (see, e.g., Ref. [54]):

2
Fo=—E (3 l(YIS(0))>.
36,06,

In the limit of high signal-to-noise ratio (SNR) typical for
strong signals, that representation implies that the FIM rep-
resents the Hessian of the maximum-likelihood estimate
[MLE, formulated as finding ] maximizing the log-likelihood
(Y, S(8)) for the specific collected dataset Y] and character-
izes scattering of the estimation results for multiple repetitions
of the experiment [52].

Alternatively, one can adhere to the Bayesian approach
[55] and consider the posterior probability p(0]Y) of the
parameter vector @ conditioned by the measured dataset Y.
For a uniform prior probability distribution (absence of use-
ful information about the investigated parameters before the
measurement) and high SNR, the FIM F describes the shape
of the posterior probability distribution near the point 8y, of
the likelihood maximum [51,52]:

pOIY) o< L(Y[S(8)) o< exp [—1(8 — 8y) F (8 — Bu1)].

)

The application of FI in terms of CRB is directly related
to accuracy and resolution in imaging, while its Bayesian
interpretation is helpful for our development of the constraints
treatment approach. Some insights into relations between like-
lihood, distribution of point estimation results, and FI can also
be gained from the geometrical considerations presented in
Appendix A.

It is also worth mentioning quantum Fisher information
(QFI) [56-58], which generalizes the concept of classical
FI and corresponds to the maximum of classical FI over
all physically valid measurements. QFI represents a power-
ful tool for theoretical analysis of relatively simple systems
[25,26,29,30,59-62] and can be applied even to practical mul-
tiparametric problems [63—65], but may require cumbersome
calculations in that case. Due to the same structure and similar
interpretation of classical FI and QFI, our approach remains
applicable to QFI as well. However, in the current work we
focus on practical applications considering quantum imaging
with a fixed (not optimized) type of measurement and limit
our analysis to classical FI.

(6)

B. Fisher information in quantum imaging

In quantum imaging, the measured signal S(0) is typically
represented by field correlation functions [4]:

G(n)(rla t] ; LEC ] ; rl’l’ tll)
=(ET(r, 1) EC @, t)EP(x,, 1,) - - EP(ry, 1)),
(8)

where E®)(r, t) are positive-frequency (negative-frequency)
field operators. Namely, the signal S(8) = (S;(@), S2(8), ...)
is composed of the components

Si(0) o G (e 175D D) ©9)

(a) (b)
° ° o Ai
Cor

FIG. 1. Problem parametrization in quantum imaging: (a) by po-
sitions r; and brightnesses /; of point emitters; (b) by transmission
amplitudes A; of pixels.

defined by specific arguments of the correlation function.

From a practical point of view, the nth-order correla-
tion function G™ describes the rate of n-photon coincidence
events for specified detection positions and time delays. The
signal component S;(#) describes the mean number of the cor-
responding coincidence events, while the component Y; of a
random signal realization Y = (Y, Y2, . . .) equals the realized
(integer) number of such events.

Commonly, the detection events can be treated as in-
dependent ones and the likelihood function corresponds to
independent random variables Y; obeying Poisson distribution
with the mean values S;(6):

L(Y|S(9)) = [ [ L(¥iIS:0)). (10)

where

Y
L(Y|S(9)) = %e—m

(11)
is the likelihood function for a single-variate Poisson
distribution.

In that specific but commonly encountered case the expres-
sion (4) can be simplified and takes the following form (see
Refs. [30,33,34,66] and Appendix B):

1 9S;(0)9S:(9)

Fy, = 12
g Xi:si(o) 30, 6, (12)

It is worth noting that the structure of Egs. (4) and (12) for
the FIM elements F},, is very similar, while their meaning is
quite different. The general expression (4) is constructed from
probabilities of all possible (mutually exclusive) measurement
outcomes Y, and the normalization ) _y L(Y|S(8)) = 1 holds.
In Eq. (12), the summation index i enumerates different sig-
nal components measured simultaneously in one experiment.
The quantities S;(@) represent the expectation values of the
events numbers and are not subjected to any specific kind of
normalization.

The set of inferred parameters @ is determined by the
model of the investigated object. In quantum imaging, the
model is typically defined either as a set of discrete point
emitters, parametrized by their positions r; and brightness I;
[Fig. 1(a)] [23-27,29-33,35,64], or as a pixelized mask char-
acterized by the transmission amplitudes of the pixels A;
[Fig. 1(b)] [8-10,28,34,67,68].

The FIM itself provides valuable information about the
problem structure—parameters correlations and inaccuracies
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(see, e.g., Refs. [26,28,65,66]), since the variance and co-
variances of the parameters are related to the inverse of the
FIM by the CRB. For various optimization purposes, as well
as for quantification of optical resolution, it is also useful
to construct a scalar real-valued characteristic providing an
aggregate description of the accuracy in a multiparametric
problem. There exist several common choices of such a scalar
quantity [69-72]: the volume of the joint confidence region
defined by CRB (D optimality—minimization of the determi-
nant of the inverse of FIM: min det F ~!); the major axis of the
joint confidence region [E optimality—minimization of the
maximal eigenvalue of the inverse of FIM: min Ay (F IR
the perimeter of the enclosing box of the joint confidence re-
gion (A optimality—minimization of the trace of the inverse of
FIM: min Tr F~!). The latter choice has already been applied
to quantum imaging [28,34,35] by using the lower bound of
total variance

A*=TrF~' <) Vard, (13)
"

as a measure of diffraction-caused inaccuracy.

FI represents a powerful and useful tool for resolution
quantification in imaging. If inference of the positions (sepa-
ration) of point emitters is considered, CRB directly provides
a resolution measure: the predicted (minimal) inaccuracy of
the position reconstruction quantifies the resolving power
of the microscope [23-25,27,29,31,32]. For analysis of pix-
elized images, one can start from the notion that a feature
is resolved if the acquired image (dataset) contains enough
information for inference of the feature parameters with a
certain requested accuracy [23,24,34,35]. In particular, one
can define the spatial resolution as the minimal spatial scale of
the problem (or feature size), for which the quantity defined by
Eq. (13) is lower than a certain threshold value determined by
further exploitation purposes of the imaging results [34,35]:
Az < Atzhreshold'

The close connection of FI to achievable resolution allows
us to use it for optimization of the imaging setup. The in-
crease of FI, including the removal of “Rayleigh’s curse” in
simple cases, indicated apparent advantages of detection pro-
tocols based on spatial mode demultiplexing [29,30,33,73,74],
modification of the point-spread function (PSF) [31,32], or
probabilistic transformation of an entangled light state [34].
Analysis of the FI proved to be useful in optimization of
quantum light sources [28,34] and selection of the optimal
cumulant order in superresolution optical fluctuation imaging
(SOFI) [35,36].

In both object parametrizations discussed above, some ba-
sic constraints can limit the range of meaningful values for
the parameters. For example, brightness of any emitter or the
absolute value of the separation between two emitters should
be non-negative (f; > 0, Ar = |r; — r,| > 0). For a passive
transmitting object, the absolute value of a pixel transmis-
sion amplitude cannot exceed 1: |A;| < 1. In a commonly
encountered case of an object with a real-valued transmission
amplitude (see, e.g., Refs. [8—11,75-77]), the constraint takes
the form

0<A <1, (14)

A remarkable illustration of the constraints influence on
the practically achievable spatial resolution was provided by
the experiment reported in Ref. [28]. A number of pixelized
objects (one-dimensional sets of slits and two-dimensional
masks) were illuminated by biphotons and pseudothermal
light and the second- and third-order correlation functions
were recorded. Quite unexpectedly, actually achieved reso-
lution was several times higher than the theoretical limit,
predicted without taking the constraints into account. Namely,
the resolution limit (minimal pixel size dp, defined from FI
according to the predicted inference accuracy for the pixels’
transmission amplitudes [34]) was approximately a half of
the Rayleigh limit dg for the optical system used: dyin =
(0.4 = 0.5)dr. The experimental datasets allowed successful
object features reconstruction for the parametrization with a
noticeably smaller pixel size: d &~ (0.25 = 0.28)dr < dpin.

Those counterintuitive results were explained by a specific
feature (still, quite common for model experiments) of the im-
aged objects: the actual transmission amplitude of their pixels
took binary values A; = 0 or 1. Therefore, the constraints (14)
were active (i.e., influenced the reconstruction process) and
provided additional information about the sample. It is worth
noting that the information about such binary type of the
objects was not implied a priori and was not used to assist the
reconstruction algorithm. The connection between the resolu-
tion enhancement and the constraints was verified by Monte
Carlo simulations and numerical estimation of the inference
accuracy. The achievable resolution (minimal pixel size for
reliable reconstruction of the transmission amplitudes) was
approximately twice as good for black-and-white model ob-
jects (with active constraints) than for the corresponding gray
objects (when the constraints are inactive because the values
are far from O and 1). However, a way to quantitative theoret-
ical Fl-based prediction of such resolution improvement was
not considered in Ref. [28]. In the current contribution, we
aim to fill that gap.

III. CONSTRAINED ESTIMATION
AND FISHER INFORMATION

A. Influence of constraints on parameter estimation

When the estimation formalism is applied to real-world
tasks, the true values of the parameter may be constrained by a
specific physical domain: # € €. In that case, it is reasonable
to impose the constraints on the estimated values as well:
0 € Q. If the constraints are active (i.e., the true values of
the parameters are within the estimation inaccuracy from the
boundaries of the region €2), the relation between FI and the
estimation errors becomes more complicated than prescribed
by CRB [Eq. (5)]. The constrained estimation typically
violates unbiasedness condition [42] required for validity
of CRB.

In Bayesian treatment of the problem, the constraints in-
duce nontrivial prior probability: po(6) = 1/|2| for 0 € Q
and O otherwise. Since prior probabilities are not taken into
account by FI, it does not describe the posterior probability
by Eq. (7) correctly for constraint problems.

The influence of the constraints on the distribution of esti-
mated parameter values in the one-parameter case is shown in
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(a) (b)
P (0"|0) Unconstrained L (0|Y) Likelihood
S . )
p019) /\\\Conwamed P, (6) ;F;rrggability
S 0
p (1) . dacarding p(O1Y)  probabity
0 0

max max

FIG. 2. Influence of a constraint 0 < 6., on the estimate distri-
bution: (a) distribution of the estimated parameter value 0 for its true
value 6 (from top to bottom—unconstrained estimate, constrained
estimate, and formally introduced estimate with discarded nonphys-
ical values); (b) Bayesian posterior probability for the parameter
0 for a given signal value Y (from top to bottom—unconstrained
likelihood, prior probability distribution describing the constraint,
and the resulting posterior probability). Dashed lines show Gaussian
fit of the unconstrained distributions. The resulting width after the
constraint application is smaller than the one predicted by FI.

Fig. 2 (provided just as an illustration without connection to
any specific physical model). It is worth noting that Bayesian
“cutting” of the posterior probability distribution by setting
zero prior probability for nonphysical values can be formally
reproduced in the distribution of point estimation results by
performing unconstrained estimation and subsequent discard-
ing of nonphysical values 9unconstr_ ¢ Q. In the high-SNR
case, the resulting distributions will have practically the same
width. While that estimate with the values discarding does not
follow typical practical procedures of parameter inference, it
is useful for getting some insights for the development of the
FIM modification approach.

In the one-parameter case, the constraint-induced decrease
of the parameter reconstruction error (the width of the esti-
mate distribution) is quite limited. Taking into account that the
true value 6 € Q2 belongs to the physical domain and assuming
that the distribution p(@ |6) is symmetric around the true value
0, one can easily see that the width is minimal for 6 having
a boundary value (@ = 6,,x for the case shown in Fig. 2)
and reaches 1/2 of the initial width of the unconstrained
distribution. The effect can be much more pronounced for a
multiparameter problem [28]. Figure 3 illustrates the state-
ment for a model two-parameter problem, where the error is
reduced by the factor of approximately 6.

B. Effective Fisher information matrix
for constrained estimation

For unconstrained problems, FIM can be used for effi-
cient prediction of experimental inference inaccuracies via
CRB [Eq. (5)]. In high-SNR regime, FIM also represents the
quadratic-form kernel for a Gaussian approximation of the
estimated parameters distribution [Eq. (7)]. Mathematically,
the two meanings of FIM are ensured by the relation between
the quadratic form and the covariance matrix of a multivariate
normal distribution:

pB) ocexp[—1A0" FAB] = Cov®, ) =F !,  (15)

where A = 8 — E(@).

When the constraints are applied to the problem, the basic
CRB becomes invalid (due to bias of the estimate) while
use of its modified versions [38,40,41,43] is typically com-
putationally expensive. On the other hand, transformation of
probability distributions p(@) > Peonstr. (9) caused by applica-
tion of the constraints is quite straightforward, as discussed
above.

From practical point of view, one is interested in errors
of the parameters estimation, namely, in the covariance ma-
trix Covconsm(é, 9) for the constrained distribution. If the
distribution pconstr. (9) can be approximated by a multivariate
normal distribution ﬁ(i)), the relation similar to Eq. (15) will

1.2

(b) , (c)
1.1 11 |
1.0- 1.0
< 09 < 09
0.8 0.8
0.7 0.7
0.6 4 0.6 0.6
06 07 0.8 09 1.0 1.1 1.2 06 07 0.8 09 1.0 1.1 1.2 06 07 08 09 1.0 1.1 1.2
0 0
1 1 1

FIG. 3. Influence of constraints 6; < 1 and 6, < 1 on the distribution of parameters’ estimates for a model two-parameter case: (a) prob-
ability distribution for an unconstrained problem, constrained distribution corresponding to posterior probability for Bayesian treatment or
(b) to the formal distribution of the estimated parameters values after discarding nonphysical results, and (c) a Gaussian approximation of the
constrained distribution according to Sec. III B. Capital letters A, B, and C indicate the mean values for the probability distributions shown in
panels (a), (b), and (c), respectively. Dashed lines correspond to the eigenvectors of the covariance matrix and indicate the corresponding widths
of the distributions. The constrained estimate is biased (the point B is shifted from the point A indicating the true values of the parameters 0,
and 6,). Errors of the parameters’ estimation become approximately 6 times smaller when the physical constraints are taken into account.
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CRB
Cov(6,0) ~ F"

3

COVC\mslr‘(é?é) ~ PF’I

7

FIM F Modified FIM F
Probability Probability Probability

P(0)

Q

FIG. 4. Scheme of taking constraints into account by con-
struction of modified FIM. The basic FIM F corresponds to the
unconstrained problem and, in the high-SNR regime, represents the
quadratic-form kernel for the probability distribution p(@) of un-
constrained parameter estimates. Then, the constraints are applied
to the probability distribution and the result is approximated by a
multivariate normal distribution [7(9). The kernel F of that distribu-
tion’s quadratic form can be interpreted as the modified FIM since
it is related to the covariance of the constrained parameter estimates
through the usual CRB.

p(6) Pea()
&i\\gi [$> — [:>

N

hold

() o exp [—1 A" F AB] = Coveonser (0, 8) ~ F~', (16)

where A = 6 — Econste. (9). The quadratic form F of the prob-
ability distribution [7(9) can be interpreted as the FIM for the
constrained problem and quantifies the error of constrained-
parameter estimation via the usual (unmodified) CRB defined
by Eq. (5). The transition from the initial FIM F to the
modified FIM F is shown schematically in Fig. 4. Since the
proposed procedure of FIM modification preserves the form
of CRB for constrained problems, further analysis methods
based on the CRB (e.g., quantification of resolution [34] or
optimization of the measurement setup [28]) remain valid.

Computationally efficient procedure of transforming p(@)
into 5(8) has been proposed in Ref. [53] in the connection
with adaptive quantum tomography with Bayesian update of
the knowledge about the analyzed quantum state. The con-
straints are assumed to be linear and have the form a8 < b iz
The idea of the approach consists in iterative shrinking of the
probability distribution according to the current most severely
violated constraint.

Let the probability distribution obtained after the ith itera-
tion be described as

PO occexp[—1A0"FONG], AO=06-67. (17
Then, the (i + 1)st iteration transforms p® () into p‘+1 (@)
and includes the following steps [53] (see Appendix C for a
visual illustration and additional expressions):

(1) Construct a matrix T =TT = (F¥)Y/2 and apply a
linear coordinate transformation 8 > 6 = T (8 — 6?), such
that the transformed distribution has zero mean 8" = 0 and

the quadratic-form kernel represented by the unit matrix:
FO = T-'FOT-1 = 1. The transformation is nondegener-
ate if F¥ is not singular.

(2) Recalculate all constraints to the new coordinates as
aj>a,=a, T\ bjr> b, =b;—alo".

(3) Find the index of the most severely violated constraint:
j= argminj(b/j/laﬂ).

(4) Shrink the distribution in the direction d = a/|a’}|
corresponding to the found constraint: F®' > F®" 4 gdd”,
09 > 990" = —5a. Explicit expressions for § and & are listed
in Appendix C.

(5) Apply the inverse transform to get the resulting
probability distribution after the current iteration: F(+D =
TFO'T = F® 4 ¢7dd" T, 0D = ¥ — sT7-'d.

C. Ill-defined Fisher information matrix for dark objects

Both the application of the CRB (5) to the unmodified FIM
and the implementation of the proposed iterative correction
require the FIM to be nonsingular in order to get meaningful
results. However, the multiparameter estimation problem in
quantum imaging can yield an ill-defined FIM if the object
contains a dark (nontransparent) region.

In particular, for a uniform object with the transmission
amplitude A, the nth-order correlation function G™ defined
by Eq. (8) is polynomial relative to A: G™ oc A?". Then the
FI calculated for the problem parameter A scales as F o
A?"=1_For conventional intensity-based imaging (n = 1), the
singularity is absent: 2(n — 1) = 0 and F remains nonzero
for A = 0. However, for detection of correlation functions
with n > 2, one has F =0 for A =0 (quite similarly to
“Rayleigh’s curse” for inference of two point light sources
separation [29]).

As another illustrative example of quantum imaging, one
can consider illumination of the object by ideally correlated
biphotons. The second-order correlation function can be rep-
resented as [4]

2
G (ry, 1) o [W(ry, 1)* = ‘/szAZ(S)h(S, r)h(s, rp)| ,

(18)

where A(s) is the transmission amplitude of the object at the
point with the transverse position s, and A(s, r) is the PSF
(Green’s function) of the optical system.

For a pixelized object, an array detector, and a general case
of nonideally correlated biphotons, the second-order corre-
lation between the ith and jth pixels of the detector can be
expressed as [28]

2

G o WP = | YDyl AA (19)

m,l

with certain coefficients D%) (real valued for simple mod-
els [28]). If biphotons are ideally correlated, the additional
relation Df,i{) =0 holds for m # [. According to Eq. (12),
diagonal elements of FIM are proportional to

Fon 0 A2 Y (DY) oc A2, (20)
ij
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for the considered parametrization. Therefore, the adverse
scaling of FIM for A,, — 0 remains the same as for the toy
example of a uniform object.

D. Regularization of ill-defined Fisher information matrix

An insight to the reasons of FIM singularity and inapplica-
bility of CRB for quantum imaging of dark objects can be
gained from Egs. (6) and (7). Roughly speaking, the local
properties of the log-likelihood, characterized by its second
derivative over the parameters, are used to estimate the distri-
bution shape and to quantify its width. However, such local
properties can be nonrepresentative if the distribution shape is
far from the assumed one.

To assist our intuition, it is worth considering a simple
problem resembling the discussed behavior of FI. Let us sup-
pose we are given a profile y(x) with the maximum at x = 0
and need to estimate the width of that peak. If the peak has
Gaussian shape [y(x) & e*/@")], the half width o can be
estimated by calculating the second derivative of the profile
logarithm:

6= Y@ = d—2(1ny) (21)
T dx? ’

/YO0

Now, let us consider the profiles y; = e~
and y, = ¢ "'/29") k> 2 [Fig. 5(a)]. In both cases, we have
Y@(0) =0 and Eq. (21) is inapplicable for estimation of
o, while the actual width remains finite. To get meaningful
width estimates, one can probe the slope of the peak by cal-
culating ¥ @ (x") for shifted positions x” # 0 and construct the
quantities

max (0, (|x|—x0))*/(20%)

A) =Y +ol) =X+ YPx)2 (22)

Geometrically, we fit different parts of the peak slope by
a Gaussian-shape peak and estimate the resulting width
[Fig. 5(b)]. For the profile y;(x), the value

Omin = min A(x") (23)
x/

will be exactly the half width of the peak [Fig. 5(b)]. For
the function y,(x), Eq. (23) provides an approximate result,
which, however, is still quite accurate [see Fig. 5(c) and Ap-
pendix D]J.

One should treat the discussed illustrative example with
caution: the toy example deals with a continuous dependence
y(x), while the actually detected signal Y in quantum imag-
ing typically represents a vector of discrete integer-valued
random variables. Moreover, it is the discreteness of the de-
tected signal that leads to singularity of FIM for a dark object
(Appendix E). Still, the gained insights can be used for regu-
larization of FIM.

To design the regularization procedure for FIM, we start
from considering the one-parameter case. When the error A
of estimating the parameter 6 is analyzed on the base of CRB,
FI F () (which, in the case of a single parameter, is a scalar—
1 x 1 matrix) plays the role similar to the quantity ¥ ®(x),
introduced in Eq. (21):

1
JE©)

~

(24)

Wi

FIG. 5. Width estimation by the second derivative. (a) Model
profiles defined in the text (blue solid line—y; (x) with xo = o; black
dotted line—y,(x) with k = 4; red dashed line—y,(x) with k = 8).
(b) Width estimation by “scanning” the profile by a Gaussian-shaped
peak: total half width A(x") includes the half width o (x") estimated
at the shifted position x” and the displacement x'". (c) Half-width es-
timate oy, for y»2(x) according to the proposed approach normalized
by the true half width o of the profile (at the height e~!/?).

That analogy is also supported by definition of FIM according
to Eq. (6).

In the case of a dark object (F ~ 0), Eq. (24) strongly
overestimates the error, since the second derivative is not
representative enough for the probability distribution shape.
Following the idea of Egs. (22) and (23), one can define

A@)=10"—0|+F~ %@ (25)
and estimate the inaccuracy as

Amin = min A@©"). (26)

The approach is illustrated in Appendix A.

Now, we aim at constructing a modified FI F(#) such that
the initial form of the relation A = A, ~ [F(6)]~!/? holds.
This requirement can be fulfilled by defining

1 F(©)
= 3 mE}X 3"
Amin ¥ (1410 —0|JF (@)

In a general multiparameter case, one can apply the dis-
cussed regularization along main axes of FIM independently.

27)
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If FIM F (0) is decomposed as
=) hvivi (28)

where X; and v; are eigenvalues and eigenvectors, respectively,
and v/ v; = §;;, one can consider the shifts 8’ = 6 + v;50 for
each separate direction v;. The direct analog of the scalar FI
F (0") for the one-parameter case is the projection of FIM for
the shifted parameters at the considered direction:

2:(80) = VI F(0 + v;30)v,. (29)

F(60)

Therefore, the generalization of Eq. (27) to the multiparameter

case is
F@O)=> v/, (30)

where

%; = max 41(89) . (31)

% (1 4 186014/750))°

It is worth noting that we neither provide accurate proof
of the proposed regularization procedure nor claim that the
constructed modified FIM F () ensures a rigorous bound via
CRB for the estimation error. Rather, the approach is expected
to be a useful practical tool for approximate assessment of
the errors and resolution for multiparametric problems in
quantum imaging. The next section illustrates the approach
with several examples, starting from a simple one-parameter
toy example and covering resolution estimation in practical
multiparametric quantum imaging.

IV. APPLICATION OF THE APPROACH
TO QUANTUM IMAGING

A. One-parameter model

To illustrate the proposed procedures of the FIM correction
for constrained problems in quantum imaging and assess the
accuracy of the approach, we start from a simple toy exam-
ple of a uniform object with the transmission amplitude A,
0 < A < 1, representing the only parameter of interest. Let us
assume that the light source emits groups of n time-correlated
photons and n-photon coincidence events are detected. For
n = 2, such process corresponds to emission of biphotons by
spontaneous parametric down-conversion (SPDC) in a non-
linear crystal. Let the number of the emitted photon groups
per an experiment have the mean value N and be described
by Poisson distribution. Then, the detected signal Y has the
expectation value

S(A) = Np"A™", (32)

where 7 is the light collection efficiency.

The likelihood for the signal Y (taking integer values)
corresponds to Poisson distribution (11) with the parameters
vector @ containing the only component A. Equation (12) for
the FIM is applicable in the considered case and yields the
result

F(A) = 4n’Nn"A2"= D), (33)

It is worth noting that the considered toy problem can be
parametrized in different ways. For example, one can choose

the probability of photon transmission T = A? as the param-
eter of interest instead of the transmission amplitude A and
get a different expression for the FI (Appendix F). However,
such parametrization would be quite unnatural for a more
general multiparameter case with light interference effects:
for example, the transmission amplitude directly enters the
expression (19) for imaging with nonideal spatial correlations
of biphotons. The main goal of the current section is the il-
lustration of the developed approach by a simple example and
preparation for analysis of practical multiparametric problems
in Sec. IV C. For that reason, we follow the general course
here and use A as the parameter of interest, rather than search
for the optimal parametrization of the specific toy problem.
Further discussion of parametrization influence on FI is pro-
vided in Appendix F.

As references for evaluation of the proposed approach,
we consider the following two estimates of the transmission
amplitude A:

(1) Constrained MLE:

AwLe(Y) = argmaxycy | L(Y|S(A")) = min(1, S~ (Y))
= min(1, Y /@INT/C0p=12), (34)

(2) Mean over posterior probability distribution according
to Bayes’ formula:

. U AA'L(Y |S(A)A
fy(r) = AL
[} dAL(Y|S(A"))

(35)

It is worth noting that the latter also represents the opti-
mal biased estimate (following the spirit of Refs. [43,44,47]),
minimizing the mean squared error (MSE) averaged over the
range of the true values A € [0 1] (Appendlx G1).

The bias of the estimates Ay g and Ag is shown in Fig. 6(a)
for N =200, n = 0.7, n = 2. One can see that the estimates
are, indeed, biased near the boundary values A = 0 and A = 1
(in the regions I and III, respectively).

Figure 6(b) shows the dependence of the estimation error

A = +~/MSE = VE[A — A)?] (36)

on the true value A of the transmission amplitude for the
two estimators (blue and orange lines correspond to MLE
and Bayesian estimators respectively). For each estimator, the
MSE is calculated directly from the probability distribution
(solid colored lines) and from modified CRB taking the bias
into account [43] (dashed colored lines). The details of the
calculations are described in Appendix G 2.

One can notice that, in the region I, the error strongly
depends on the estimator used; changing the bias, one can
“redistribute” the inaccuracy over the range of the parameter
A [41]. MLE is heavily biased to zero: it maps zero sig-
nal Y =0 to AMLE(O) = 0, while such an outcome remains
the most probable one for the whole range A € [0, Ag] with
Ag = N~1/Cmy=1/2 — (.32, The estimation error is vanishing
for A = 0 but becomes quite large around the value A = Ay.
On the opposite, the Bayesian estimate takes into account that
zero signal is probable for A € [0, Ap] and maps it to Ag(0) ~
Aol'(1/n)/T'(1/(2n)) = 0.49A¢. It is worth also mentioning
the modified MLE, introduced in Appendix 5 of Ref. [30],
where the MLE mapping is overridden by Ay, 5 = Ao/2 to
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FIG. 6. Transmission amplitude estimation for a uniform object
(single-parameter model): (a) estimation bias and (b) error. The
notations of line styles are listed in the text. The regions I and III
correspond to biased estimates for dark (A close to 0) and bright (A
close to 1) objects, respectively. In region II, the value A is far from
the boundaries and the estimate is almost unbiased. The inset in panel
(b) shows an enlarged part of the region III, where the constraint
A < 1 leads to the estimation bias.

improve the worst-case estimation error. Still, the MSE re-
mains finite for the whole range A € [0, 1] for the considered
estimators.

Black lines in Fig. 6(b) correspond to application of basic
CRB [namely, Eq. (24)] to the unmodified FI F(A) (solid
black line), FI after regularization according to Eq. (27) (dot-
ted black line; see Appendix G 3), and FI F(A) regularized
and then corrected for the constraints (dot-dashed black line;
see Appendix G 4). The regularization procedure resolves the
divergence of the basic CRB with unmodified FI at A = 0.
The correction, described in Sec. III B, further improves the
error estimate and makes it consistent with the actual inaccu-
racies indicated by the colored lines in Fig. 6(b) (up to the
strong variation of the error for different estimators in the
region I).

B. Two-parameter model

As the next step of the proposed procedure illustration,
we consider the following two-parameter model. The object
consists of two parts with the transmission amplitudes A; and

A,, representing the parameters of interest: § = A = (A, Ay).
The physical domain of the parameter values is naturally
defined as Q2 = {A]0 < A; < 1}. We assume that the object is
illuminated by an SPDC light source, producing on average N
photon pairs (n = 2) per an experiment, and the second-order
autocorrelations are measured by a pair of detectors with the
efficiency 1. The signal vector S(A) contains two components,
which are described according to Eq. (19) as

> DYANA
m,l=1,2

2

Si(A) = Np>GP = Nn? L i=1,2.

(37)

For simplicity, we assume that the coefficients D%) are
real, symmetric, and correspond to ideal spatial correlations
of photons:

(i) a1 _ n22) _ 1) _ n(22) _
D,/ €R, Dy’ =Dy’ =hy, Dy =Dj~ =h,

Dyy =Dy =0. (38)
Therefore, the signal components can be expressed as

S1(A) = Ni? (hoA? + hiA2), (39)

SH(A) = NP (AT + hoA2)’. (40)

The realizations of the measured signal Y = (Y7, 1) are as-
sumed to be characterized by Poisson distribution with Y;
having the expectation value S;(A). The FIM for the problem
can be calculated according to Eq. (12) and equals

1 ¢
2(1,2 2 Al AIAZ
F(A)—16N7’] (h0+hl)<§!1‘2 !% ), (4])
where
=7 0 ll | | 1 f ( )
= , < 1 for hy # hy. 42
; (2) % é’ 0 1

For comparison with the error prediction by the proposed
approach, we consider the following estimates of the parame-
ters of interest A:

(1) Constrained MLE:

Amie(Y) = argmax,, o [L(Y|S(A))] (43)

where the likelihood for the two-component signal is defined
according to Eq. (10).
(2) Bayesian mean a posteriori estimate:

Ji dA} [} dALL(YIS(A)A’
fol dA; fol dA,L(Y|S(A"))

Figure 7 shows the results for the considered two-
parameter model. The estimators listed above are applied to
1000 random samples of the signal Y for the true values of the
transmission amplitudes localized in the lower part [Fig. 7(a)],
the center [Fig. 7(b)], and the upper part [Fig. 7(c)] of the
physical domain. The estimation results Y + A are shown
as points in each part of the figure. The statistics of each
generated dataset is shown as an ellipse, indicating the mean
value (A) and the covariance C = Cov(A, A) according to the
approach described in Appendix H:

AATC'AA =21n2,

Ag(Y) = (44)

AA = A — (A). (45)
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FIG. 7. Transmission amplitudes estimation for the two-parameter model. The true parameters values are (a) A; = A, = 0.2, (b) 0.5, and
(c) 0.9, as indicated by black dots. Blue crosses and orange circles show the parameter inference results of a randomly sampled signal for
MLE and a Bayesian estimate, respectively. One thousand samples were used for statistics estimation; 300 samples are shown in the figure;
some results coincide due to discreteness of the signal. The modeling parameters are (a), (b) n = 0.7, hp = 1, h; = 0.8; N = 1000 and (c) 50.
Ellipses (blue dotted for MLE and purple dot-dashed for Bayesian estimate) are centered at the mean of the sampled results and have the shape
defined by the corresponding covariance matrix (Appendix H). Black dotted ellipse (extending beyond the plotted regions) shows the predicted
results scattering according to CRB with the standard FIM F (A). Black solid ellipse corresponds to the regularized and corrected FIM F (A).
Straight black lines show the constraints imposed on the parameters A; and A,.

The results of random sampling are compared with the
error predictions based on the CRB and FIM: the standard
one F(A), calculated according to Eq. (41), and the FIM
F(A) obtained by applying the proposed regularization and
correction procedures to F (A). The FIMs F(A) and F(A) are
also visualized as ellipses (Appendix H).

First, one can notice that in the case, shown in Fig. 7(b),
the true value A = (0.5, 0.5) is far from the boundaries. The
regularization and correction procedures act trivially: F(A) =
F(A) and the dashed and solid black ellipses coincide. The
statistics of MLE and Bayesian estimates almost coincide with
each other and with the prediction according to the CRB (still,
some estimation bias is present).

For the cases when the constraints are active [Figs. 7(a) and
7(c)], the CRB with the standard FIM strongly overestimates
the errors. The sampling statistics depends on the particu-
lar estimator used. Up to that variability, the corrected FIM
provides a reasonable prediction of the parameters estimation
inaccuracies.

C. Practical multiparametric models in quantum imaging

To conclude testing of the proposed approach, we apply
it to multiparametric quantum imaging problems analyzed in
Refs. [28,34]. The considered imaging setup is schematically
shown in Fig. 8(a) and follows the ideas of the biphoton
imaging experiment in Ref. [28]. An object consists of ver-
tical slits [each having width 4 and a constant transmission
amplitude—Fig. 8(b)] and is illuminated by entangled photon
pairs. The radiation is collected by an optical system with
the resolution limit dr (classical Rayleigh limit for incoherent

imaging). The registered signal represents coincidence counts
number for a pair of detectors.

First, we consider a ten-parameter model with the object
shown in Fig. 8(b) [34] and parametrized by the transmission
amplitudes A,, (each describing the region (m — 1)d < x <
md of the object): = A = (Ay, ..., Ajp). We choose Apip, =
0.9 for testing the correction-only procedure and Ay, = 0 as
the case when both regularization and correction of the FIM
are required.

The incident photon pairs are assumed to be ideally cor-
related, and the signal is described by Eq. (19) with i = j,
m = [, and the sampling points corresponding to the step d/2
in the object plane:

2

Si(A)=NG?(xj,xj)=N|Y DUPAL| . (46)

m

where N is the expectation value of the total number of
detected coincidence events (already taking into account the
detectors efficiency), x; = jd/2,

md

DYD) = 4k2 f ds Sinc?[kmax (s — X)), (47)
(m—1)d

and kyax = 3.83/dg is the momentum-transfer cutoff of the

optical system [34].

Similarly to previous examples, Poisson statistics of the
signal is assumed, and the FIM is calculated according to
Eq. (12). The total value of the estimation error, predicted
by the CRB, can be quantified by the quantity A? defined in
Eq. (13) and applied to both the standard FIM F(A) and its
regularized and corrected counterpart F(A). As a reference
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FIG. 8. Transmission  amplitudes  estimation  for the

ten-parameter model. (a) Scheme of the modeled imaging
setup. Biphoton radiation, passing through the investigated
object, is collected by an optical system and split between two
single-photon detectors. The signal is represented by the correlation
function G®(x’, x”) depending on the detector positions x' and
x”. (b) Transmission amplitude of the model object as a function
of the transverse coordinate x normalized by the width d of the
slits (extended pixels) used for pixelization of the object. (c),
(d) The dependence of the estimation error on the slit width d
normalized by the Rayleigh resolution limit dg for (¢) Ay, = 0.9
and (d) Amin = 0. The notations and line styles are described in
the text.

for quality assessment of the predictions, we also perform a di-
rect estimation of the transmission amplitudes A for the signal
Y randomly sampled according to its likelihood L(Y|S(A)).
The inference is performed by minimizing the distance

between the realized signal Y and its parametrized expectation
value S(A):

A = argmin,,|Y — S(A")|%. (48)

The estimation inaccuracy is characterized by the total vari-
ance and MSE for the sampling results:

A} = ZVar(Am), Ar = (A= AP).  (49)

Figure 8(c) shows the dependence of the estimation error
A? on the spatial scale of the problem d/dg for the model
object presented in Fig. 8(b) with Ay, = 0.9. The number of
the detected coincidence events is taken to be N = 10*. The
error A? calculated for the standard FIM F(A) (solid line)
accurately describes the variance for unconstrained estimation
(red star-marked points). If the constraint 0 < A,, < 1 is im-
posed during the transmission amplitudes inference according
to Eq. (48), the variance (green circles) and MSE (purple
crosses) become smaller. Such error decrease is accurately re-
produced by using CRB with the corrected FIM F'(A) (dashed
blue line).

Figure 8(d) presents similar results for the case Api, = 0,
which requires regularization of FIM. Application of the CRB
to the standard FIM does not yield meaningful results in that
case since F(A) is singular. For that reason, only the con-
strained estimation was sampled and compared with the error
prediction by the regularized and corrected FIM F(A). One
can see that the agreement between the results of the proposed
approach and direct sampling is good.

As the last example, we consider the object from a model
quantum imaging experiment presented in Ref. [28]. The
spatial resolution, achieved in practice, was higher than the
theoretical bound predicted by CRB with the standard FIM.
Such a counterintuitive result in Ref. [28] was the motivation
for the current research. The measurement setup in the dis-
cussed experiment corresponded to the scheme in Fig. 8(a).
The resolution of the optical system was artificially worsened
by decreasing the numerical aperture for demonstration of
sub-Rayleigh imaging and corresponded to the Rayleigh limit
dr = 30.0 wm. In contrast with the previous idealized ten-
parameter imaging model, the spatial correlation of biphotons
is not assumed to be ideal here (i.e., the photons from a pair
have nonzero probability of passing through different parts of
the object).

The object is shown in Fig. 9(a). Physically, it represents
three nontransparent (dark) slits on a transparent background
(a part of a positive USAF 1951 resolution target) with the
slit width 31.25 um. For the statement of the estimation
problem, the object was divided into 24 slit-like pixels and
parametrized by 24 values of the transmission amplitude 8§ =

= (Ay,...,Az). The true values A used for our modeling
[Fig. 9(a)] corresponded to the actual object used in the exper-
iment [28].

The measured signal S(A) is represented by the full cor-
relation matrix G®(x;, x;) without the constraint i = j [28]:

Si;(A) = NG® (x;, x)), (50)
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FIG. 9. Transmission amplitude estimation for the 24-parameter
model from Ref. [28]. (a) Transmission amplitude of the model ob-
ject: pixelized reconstruction result A= {Am} from Ref. [28] (filled
blue rectangles) with error bars built on the base of repeated mea-
surement results; true transmission amplitude of the model object
A(x) (dashed black line); and its pixelized counterpart representing
the true values A = {A,,} of the parameters of interest for the solved
problem (red vertical bars). (b) The dependence of the estimation
error on the slit width d normalized by the Rayleigh resolution limit
dr via the CRB with the standard FIM (dashed blue line) and the
regularized and corrected FIM (solid orange line). The dotted verti-
cal lines indicate characteristic resolution values: A—the resolution
limit for the corrected FIM, defined for the threshold error value
A2 oo = 0.1; B—the spatial scale of the successful experimental
inference of the object transmission amplitude [28]; C—the resolu-
tion limit for the standard FIM. In region D, the regularizing effect of
the nonideal biphoton correlations decreases with the growth of the
problem scale d.

where G (x;, x;) is calculated according to Eq. (19), the
expressions for the coefficients D% ) are provided in Ref. [28],
and N is the expectation value of the total number of detected
coincidence events. As previously, we assume independent
Poissonian statistics for the components Y;; of the measured
signal Y. Therefore, the FIM is described by Eq. (12) and
takes the form

Fu(A)=4N)" (Z D,?;’”"A,/) (Z Dl?;”'”Amr). 51
ij v m

Typically, it is sufficient to have at least one nondark pixel
(3 1:A; #0) to ensure nonzero values of the expressions
in parentheses and, therefore, nonsingular FIM F(A). The
nonideal biphoton correlations produce regularizing effect by
shifting the problem closer to coherent light imaging, where
the FIM singularity issue does not arise.

Figure 9(b) shows the results of resolution estimation via
the CRB for N = 10°. The total reconstruction error A2, de-
fined by Eq. (13), is calculated for the standard FIM F(A)
(dashed blue line) and the regularized and corrected one
F(A) according to the proposed approach (solid orange line).
The achievable resolution can be defined as the minimal
problem scale (pixel size) d = dpi,, for which the recon-
struction error A” remains within certain reasonable limit:
A? < A} oig [34]. For illustration purposes, the threshold

value A% . = 0.1, consistent with the actual experimental
noise in Ref. [28], is used in Fig. 9(b). For such selection
of the threshold, the theoretical resolution limit for the stan-
dard FIM is dpin/dr = 0.42, which is larger than the spatial
scale d/dr = (8.51 um)/(30.0 um) = 0.28 of the problem,
successfully solved experimentally [28]. FIM correction ac-
cording to the proposed approach shifts the resolution limit
to the value dpi,/dr = 0.14, thus, resolving the seeming
contradiction of beating the ultimate theoretical limit exper-
imentally.

An interesting and rather counterintuitive feature of the
obtained dependencies is the growth of the predicted error A2
when the spatial scale d of the problem increases (region D).
The effect is closely related to the regularizing influence of
the finite transverse correlation length of nonideal biphotons,
discussed after Eq. (51). When the pixel size increases and
the correlation length remains constant, the cross-term coef-
ficients D% ) with m # [ tend to zero and the standard FIM
becomes ill-defined. However, the effect is less pronounced
for the regularized and corrected version of FIM.

V. CONCLUSIONS

A priori constraints, imposed on quantum imaging prob-
lems, can improve the stability of the object parameters
inference and decrease the errors beyond the CRB-based
theoretical limit (strictly speaking, inapplicable due to esti-
mation bias). The approach, proposed in the current paper,
restores the applicability of the usual form of the CRB to
such constrained problems by constructing a modified FIM
that includes the constraints and is regularized if the initial
(standard) FIM turns out to be ill-defined.

The proposed FIM correction and regularization technique
represents a practical tool suitable for complex multiparamet-
ric models and accurate enough to be used for resolution
analysis. A competitive approach, based on a modified
CRB [43,47], requires knowledge of the bias derivatives,
which may be infeasible for analytical calculation and very
time-consuming for estimation by numerical Monte Carlo
simulations. Even for a relatively simple two-parameter case,
the analytical description of biased constrained estimates is
cumbersome.

The proposed approach was successfully applied to 1-, 2-,
10-, and 24-parameter imaging problems and exhibited a good
agreement with other methods of error estimation. For the
simplest one-parameter model, it is possible to describe var-
ious estimators and to quantify resolution analytically. Many
fundamental theoretical works have already been devoted to
such simple models. For two parameters, it is still possible
to estimate the errors directly, but the calculations are more
complicated. When a multiparametric problem is considered,
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the proposed procedure continues to work well and yields
meaningful results, while other approaches require huge com-
putational efforts. In particular, the technique developed of
FIM modification helped us to explain the high resolution
achieved experimentally in Ref. [28] and to predict the resolu-
tion limit for such a constrained problem quantitatively. While
the illustrations provided assumed a Poisson distribution of
the signal noise and the applicability of Eq. (12), the proposed
method itself is not limited to such models in any way and
can be applied to the FIM regardless of the specific type of
expression used for its calculation. It is worth noting that the
applicability of the developed approach can be extended to
problems with a larger number of parameters (e.g., hundreds
or thousands) by analyzing subproblems of a reasonable size
after splitting the initial problem into almost independent win-
dows [28].

The ability to construct the modified FIM for constrained
problems can be useful for resolution estimation (as shown
in the last considered example), problem structure analysis
(similar to the one performed in Ref. [28], but more accu-
rate for constrained problems), imaging setup optimization,
and other similar tasks. The applicability of the approach
extends far beyond quantum optics. For example, Monte Carlo
simulations for high-resolution x-ray diffraction in Ref. [66]
demonstrated decrease of the estimation variance when the
natural physical constraints imposed on the parameters of
interest became active. The proposed technique is capable of
predicting such effect on the base of the modified FIM and
CRB.

Since the QFI equals the classical FI for the optimal mea-
surement, it is affected by the a priori constraints in a very
similar way. Therefore, the developed approach is not limited
to classical FI and can be applied to QFI as well.
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APPENDIX A: GEOMETRY OF LIKELITHOOD
AND FISHER INFORMATION

The close connection of FI with distribution of the esti-
mation results (via the CRB) on the one hand and with the
likelihood [via the definition (3)] on the other hand gives
rise to its frequentist and Bayesian interpretations (see, e.g.,
Refs. [51,52]). The geometry of the connection between the
likelihood, distribution of the estimation results, and FI is
illustrated by Fig. 10. The maps schematically (without direct
relation to any specific physical model) represent the likeli-
hood L(Y|0) for a simple one-parameter problem with a scalar
(one-dimensional) signal Y.

Figure 10(a) corresponds to the interpretation of FI in
terms of the estimation results distribution for a fixed model.
If the true value of the parameter equals 6, the possi-
ble realizations of the detected signal Y are distributed

@)

p (010)
A widthN
i i 9

pOIY) /\(
(b) , width g

FIG. 10. Geometry of likelihood and FI: (a) distribution of the
estimated parameter value 0 for a given true value 6 of the parameter;
(b) Bayesian posterior probability for the parameter 6 for a given
signal value Y. The details are provided in the text of Appendix A.
The segment EF is also shown in panel (a) for the purpose of com-
paring the two interpretations. For simplicity, the signal Y is shown
as a continuous variable, while for quantum-optical measurements it
is typically a discrete variable taking integer values (the number of
detected photons or coincidence events).

according to the likelihood L(Y'|#), shown in the Fig. 10(a’)
for specific 8 and representing the vertical cross section AB
of the map. Inference of the investigated parameter through
itt MLE 6 corresponds to processing the detected signal
value ¥ by mapping Y > 0 = argmax, LY 16). Geometri-
cally, each point of the segment AB is mapped onto the
curve CD. The resulting distribution p(8]9), shown in the
Fig. 10(a”), describes frequencies of getting the estimated
values @ in a detection-inference procedure if the true value
of the investigated parameter equals 6. In the high-SNR limit,
the distribution can be approximated by a Gaussian profile
[dashed line in Fig. 10(a”)]. The width of the distribution
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FIG. 11. Flregularization for one-parameter problem. The same
likelihood diagram as in Fig. 10 is used. Purple dot-dashed line
schematically shows the error estimate (upper bound for §) based on
FI [Eq. (24)], which diverges at & — 0. The modified error estimate
A(0") defined by Eq. (25) takes into account FI-based error estimate
and the displacement 8’ — 6 for a shifted parameter value 6’. The
resulting regularized error estimate A, for € is constructed by
minimizing the quantity A(0’) over 6’ [Eq. (26)—i.e., by finding the
rightmost point A along the purple dot-dashed curve].

[total length I(CA) + /(BD) of the segments CA and BD]
characterizes the estimation error and is determined by FI.

The geometry for the Bayesian interpretation of FI is il-
lustrated in Fig. 10(b). For a given value of the measured
signal Y, the posterior distribution p(@|Y) of the parameter
6 [Fig. 10(b’)] represents a horizontal cross-section EF of
the likelihood map. In the high-SNR limit, the Gaussian ap-
proximation of the posterior probability is valid [dashed line
in Fig. 10(b’)], with it width /(EF) determined by the FI
according to Eq. (7).

By overlaying the segment EF onto the plot in Fig. 10(a),
one can see that, in the high-SNR limit, the two interpretations
of the FI lead to the same predicted error (width of the prob-
ability distribution). In that limit, the curve CD is almost a
straight line. Therefore, the shapes EOB and OBD, as well as
COA and AOF are close to triangles, which are equal to each
other pairwise. The width /(EF) of the posterior probability
distribution in Bayesian interpretation is approximately the
same as the deviation between the estimated and the true
values of the parameter in the frequentist approach:

[(EF) = I(EO) + [(OF) ~ [(BD) + I(CA). (A1)
The introduced geometrical treatment of the likelihood and

FI is also useful for illustration of the regularization procedure

described by Egs. (25) and (26) in Sec. Il D—Fig. 11.

APPENDIX B: FISHER INFORMATION
FOR INDEPENDENT EVENTS

For the specific case of the likelihood, defined by Eq. (10),
the general expression (4) can be simplified in the following
way: Due to additivity of FI [54] and independence of the
signal components [factorization of the expression (10) for the

likelihood], the FIM is a sum of separate contributions Flg)):

Fuw =) F. (B1)
where a term
Do~ 1 OL(YISi8)) DL(Y;1S,(8
;322 (Y;15:(0)) 0L(Y;15:(0)) (B2)
=0 L(Y;]5:(6)) 96, 90,

represents the FI for the ith component of the signal.

For the single-component likelihood, described by
Eq. (11), the derivatives over the parameters can be
expressed as

dL(Y;|S:(0))  95:(6) ( Y

0, 90, \Si(®

Substitution of Eq. (B3) into Eq. (B2) yields the resulting
expression

o 35:(0)3S:(0) <= [ Vi
i) _ _
2 (S,-w)

- 1>L(Yi|Si(0))- (B3)

FO =
w96, 06,

2
1) L(Yi|S:(6))
Y;=0
1 95;(0) 35:(0)

T 5.0) 96, 06, &

Equation (12) is obtained by substitution of expression (B4)
into Eq. (B1).

The presented approach to construction of the FIM is based
on treating the measured dataset as a whole and considering
the multivariate probability distribution for the signal vec-
tor Y. An alternative approach, typical for quantum imaging
[27,29-31], is based on calculation of FI F©vem for a single-
detection event with subsequent multiplication of the result by
the number N of detected events. A single-detection event is
characterized by the probability distribution p;(@), where the
index i enumerates the possible outcomes. For example, when
just field intensity is measured [n = 1 in Eq. (8)], the index
i describes the position of a single-photon detection r”. The
probabilities are normalized as ) ; p;(f) = 1, and the FIM can
be constructed according to Eq. (4) as

1 09pi(0)opi(6)
i) 96, 06,

F,, =NFS* =N (BS)

One can easily relate the single-event probability distribu-
tion p;(#) with the mean number S;(@) of such events used in
our approach as

Si(0) = Npi(0). (B6)

Therefore, Egs. (12) and (BS) yield exactly the same result.
Such equivalence of the approaches is not surprising since the
Poisson distribution assumed during derivation of Eq. (12)
is directly related to the independence of the events used in
Eq. (BY).

APPENDIX C: ITERATIVE ALGORITHM OF FISHER
INFORMATION MATRIX MODIFICATION

The iterative procedure of shrinking the multivariate nor-
mal probability distribution to fit certain linear constraints, de-
scribed in Sec. III B of the main text, is illustrated by Fig. 12.
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FIG. 12. Iterative shrinking of a model probability distribution in the two-parameter case: initial distribution in panel (a) and two subsequent
iterations in panels (b1)—(b3) and (c1)—(c3). The constraints are 8; < 1 and 6, < 1. The black dot indicates the true values of the parameters
(61, 6,) = (0.85,0.95). (bl), (c1) Each iteration starts from the coordinate transformation described in Sec. III B of the main text. (b2),
(c2) Then, the resulting distribution is modified to reduce the probability of violating one of the constraints. (b3), (c3) Finally, the inverse
coordinate transform if applied. Red and green points indicate the shape of the probability distribution before the first and the second iterations,
respectively. Blue and purple points show the mean values for the modified distributions after the first and the second iterations, respectively.

The modification of the probability distribution follows the
ideas from Ref. [53], but with certain changes discussed
below.

After the coordinate transformation at the ith iteration, one
ends up with the probability distribution

pP(@) cexp[—36)70]. (CI)

For the kth constraint (a; Yo < by, one can define the proba-
bility of its violation as

A 1 b,
P = / pPP@)d = |1 —erf k . (C2)
() 0>, 2 «/§|a,’(|

The index of the most severely violated constraint is
defined as

/
Jj = argmax, P, = argmink| ]/". (C3)
L

If the maximal probability of constraint violation P; is
smaller than certain threshold value (0.01 for the presented
numerical calculations), the iterations are stopped and the
probability distribution p”(#) is treated as the final result.
Otherwise, one can introduce the variable x = d”¢’ (where
d = a/|a)|), use the symmetry of the distribution (C1), and
consider the marginal distribution w’(x) oc exp(—x?/2) with
the constraint x < xo = b';/|a’|. Then, the considered iteration
modifies the marginal distribution as

w'(x) > w”(x) o exp [—#(x + 5)2}, (C4)

with the parameters £ and § being chosen according to the
following requirements:

(1) The probability of the constraint violation should be
reduced by certain quantity 1 (small enough to ensure con-
vergence of iterations—n = 0.1 for the presented numerical
calculations): P; > P; = max(P;/2, P; — n):

1 (xo+8)V1+§&
Pj:z 1 —erf T .

(2) The width of the distribution in the prescribed domain
x < xo should be preserved:

(C5)

Var(x|w’(x), x < x9) = Var(x|w”(x), x < xo). (C6)

The latter requirement differs from the one consid-
ered in Ref. [53], where preservation of the mean value
E(x|w'(x), x < x9) = E(x|w”(x), x < xo) was more appropri-
ate for the quantum state reconstruction task.

The two listed requirements imply the following expres-
sions for the quantities £ and §:

V (P}, x)

V(P x0)

X0
JIFE

where xj = +/2erf (1 — 2P}) and

3 1, (€7

(C8)

— X0,

_.2
xe e

V2r(l—p)  2n(l—p)*

—x%/2

Vip,x)=1-— (&)
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APPENDIX D: EXAMPLES OF WIDTH ESTIMATION BY
THE SECOND DERIVATIVE WITH REGULARIZATION

For the model profile y;(x), defined in the main text, the
second derivative of the logarithm takes the values

for |x'| < xp

for |x'| > xo. (D1)

YO () = |:1/002

Therefore, according to the definition (22), A(x') — oo for
x' < xp and A(X') = |x'| + o otherwise. The minimum of
A(x") is reached at X’ = +x and yields the accurate estimate
of the half width,

Omin = Xo + 0. (D2)
For the profile y,(x), the quantity ¥ @ (x) equals
k(k — Dlx'[*2
Oy = K& D 7 (D3)
20k

The displaced half width A(x’), defined by Eq. (22) is
equal to

AG) = ] + | 22 ik (D4)
k(k—1)
and reaches the minimal value at
1/k
k—2)?
X ==+ k=27 0. (D5)
2k(k — 1)
The resulting half width estimate is
1/k
(k —2)? " D)
Omin = .
2k(k — 1) k—2

The dependence of the ratio oy /o on k is shown in Fig. 5.

APPENDIX E: FISHER INFORMATION
FOR ONE-PARAMETER PROBLEM
WITH DISCRETE AND CONTINUOUS SIGNAL

Here, we show that discreteness of the detected signal
strongly influences the behavior of FI for dark objects. For
simplicity, the one-parameter model for a uniform object with
the transmission amplitude A is considered and the mean value
of the detected signal is assumed to scale as S(A) oc A2,

First, let us consider the typical case, when the detected sig-
nal Y takes integer values distributed according to the Poisson
distribution (11) with the mean S(A). According to Eq. (12),
the FI equals

_ L (45@4) ’ 2n—1)
E—SMKlM:>KA . (E1)

Now, let us approximate the Poisson distribution by a
continuous-variable Gaussian distribution with the same mean
and variance:

Y — S(A)?
Lo(YIS(A)) = —ﬁ) E2)

1
«/ZnSQA)eMD< 25(A)

Then, the FI can be calculated as

00 2
Rw=/ iy <duywm»>
T LY|S(A)) dA

(1 1 ds(A)\?
= (5w + =) (o) )

In the limit of strong signal (bright object) S(A) > 1, the
two noise distributions yield the same FI: Fg & Fp. However,
for weak signal (dark object), the asymptotics is different:

1 (dS)\

while Fp — OforA — Oandn > 1.

APPENDIX F: INFLUENCE OF PROBLEM
PARAMETRIZATION ON FISHER INFORMATION

1. Parametrization-dependence of Fisher information

The toy problem, introduced in Sec. IV A, can also be
parametrized by the transmission probability T = A%, In
that case, the FI, calculated according to Eq. (12) for such
parametrization, will be equal to

F(T)=n*Ny"T"? o A2=2, (F1)

Comparing Egs. (33) and (F1), one can notice that the FI has
different asymptotics for A — 0: if n = 2, FI for the trans-
mission amplitude tends to zero, F(A) oc A2"~D — 0, while
F(T) = n?Nn" remains constant. From that perspective, the
following questions arise:

(1) To what extent is FI parametrization-dependent?

(2) Does reparametrization of a problem help to resolve
the issue of the predicted error divergence in practice?

For a one-parameter problem, one can define the following
change of variables:

6 = g@0). (F2)

According to Eq. (3) agd the chain rule for derivatives, the FI
for the new parameter 6 equals

. 1 dd  dg9)
F=—=F, =—=— F3
J? do de )
CRB for the new parameter 6 takes the form
AB? > 1/F = J*/F. (F4)

If FI tends to zero as F = @(8%") for & — 0 (in Knuth’s
notations [78]), one can choose the new parameter by set-
ting g(6) = #™*! and ensure that the FI F would scale as
F = ®(1) and the error A would remain finite for 6 — 0.
For FI, defined by Eq. (33), the parametrization § = A" leads
to F = 4Nn" = const and resolves the FI singularity at A = 0.

Another important example is the so-called “Rayleigh’s
curse”—scaling of FI as F = ®(d?) for estimation of a small
separation d of a pair of point-like incoherent light sources by
direct imaging [29,31,33,79]. For the parametrization 6 = d?,
one has F = ©(1) and the error divergence does not appear
[the inaccuracy A(d?) remains finite for d — 0].

The presented considerations can also be extended to mul-
tiparameter problems [62,80]. The change of variables can be
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introduced as
0 =2g(0). (F5)

The FIM for the new parametrization can be calculated ac-
cording to Eq. (3) and the chain rule for derivatives:

F=UYHFJ!, (F6)

where J is the Jacobian matrix, J,,, = 89“ /06,. The CRB for
the parameters 6 takes the form

Cov(0,0) > F'=Jr 1T, (F7)

To conclude, the problem parametrization influences the
behavior of FIM significantly and can change its asymp-
totics. Therefore, a methodological “chicken-or-egg” question
arises: What comes first—the measurement or the problem
parametrization? Do we seek for any kind of information
about the investigated object after the measurement has been
performed? Or do we specify the measurement purpose (the
set of parameters 0 to be inferred) at the stage of just planning
the experiment? For practical applications, the latter approach
is generally favored. Some remarks on the optimal choice of
parameters are presented in Appendix F 3.

2. Fisher information and error analysis
for a predefined set of parameters

In the main text, we do not consider the task of finding
the optimal task-specific parametrization and assume that the
problem statement already prescribes certain fixed “natural”
set of parameters # and enforces us to report the results in
terms of those specific predefined variables. After estimation
of the errors for the introduced parameters @ according to
Egs. (F4) and (F7), one needs to return to the initial set of
parameters 6. According to the error-propagation rules, the
errors for the initial variables can be estimated as

AG? = AG?/J? (F8)
for a one-parameter model and
Cov(6,8) = J ' Cov(8,0)(J~")" (F9)

in the general case.

The transition from F = ©(#*") — 0 for 6 — 0 to F =
®(1), discussed above, requires J = ©(0™) — 0. Therefore,
the problem of the error divergence re-appears as soon as we
return to the initial variable(s). For example, in the case of
Rayleigh’s curse, a small error A(d?) of the squared sepa-
ration d? does not necessarily imply accurate estimation of
the separation d itself for small d, since Ad ~ A(d*)/(2d).
Similarly, a small error of # = A” in the toy example from
Sec. IV A does not guarantee accurate inference of the trans-
mission amplitude A.

As a result, the reparametrization of the problem just shifts
the necessity of regularization from the FIM F to the errors
recalculation according to Egs. (F8) and (F9). For a one-
parameter case, one can go beyond the linear approximation
lying behind the error propagation rules and estimate A6 in
a more accurate way (for example, by recalculating Bayesian
posterior probabilities). In a general multiparametric case, the
problem of regularizing Eq. (F9) looks at least as complicated

as our approach operating with initial FIM F itself without
resorting to the reparametrization.

3. Optimal parametrization for Fisher information analysis

In this section, we briefly discuss how the choice of the
problem parametrization can improve calculation of FI and
application of CRB, if no strict constraints are imposed on the
object parameters to be reported.

If the problem is described by a single parameter 8, defined
by Eq. (F2) and known a priori to have the value close to
6y, one can construct the efficient (saturating CRB) locally
unbiased estimator [56,62]:

O(Y,8) = Gy + F~! 4 InL(Y|S())
d 5ty
= (éo - —S(G_°)> o (F10)
§"(60) S'(60)

where we took into account Eq. (11) and introduced the
notation §'(fp) = dS(0)/d6|;_s,. Here, we do not take into
account the additional bias imposed by the upper bound
(A < 1 in the toy example in Sec. IV A).

If, for certain parametrization (specific choice of ), both
terms on the right-hand side of Eq. (F10) do not depend on 8,

é(Y) represents the globally unbiased efficient estimator:
S'(0o) = a,
S@) -
S By = B,
S'(6o)

(F11)

where o and 8 are constants (independent of 8;). The system
of equations (F11) implies that the relation between the signal
S and the parameter & must be linear:

S©0) =ab + 8. (F12)

In particular, for the one-parameter toy example, 6 can
be chosen as 6 = A%". It Ais worth noting that the con-
structed unbiased estimator 6(Y) coincides with MLE for that
parametrization.

In contrast with the optimal parametrization, the initial
parametrization of the toy problem by the transmission am-
plitude A does not allow construction of a globally unbiased
estimator. Since S(0) = 0, the mean bias of an estimator A(Y)
at the point A = 0 equals

(A)|,_g = Y ALY |S(0)) = A(0).  (F13)
Y=0

Therefore, only estimators with A(0) =0 are unbiased at
A = 0. The derivative of the mean bias at A = 0 for the toy
example equals
d(A)
dA

ZA(I)M

= 2nA(1)Nn"A>" ! =0
» 1A nA(1)Nn

A=0 A=0
(F14)

for n > 1, while for an unbiased estimator the equality

(F15)

must hold.
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Treatment of a general multiparametric case is similar. An
efficient locally unbiased estimator is constructed as [62]

B(Y. By) = By + F~' VInL(YIS®))|,_,,

_ 7 gy X (@
_00+ZF (00)(&((_)0) 1>VS,(0)

0=90
= C(80)Y + D(8y), (F16)
where
D(8y) = 6y — C(89)S(8y). (F17)

The estimator is globally unbiased and efficient if the matrix
C(8y) = C and the vector D(6y) = D do not depend on the
parameter values 6. In that case Eq. (F17) implies that such
estimator can be constructed only for a parametrization with
the following linear relation between the parameter vector 6
and the signal S(6):

0 =CS()+D. (F18)

For the two-parameter toy example, discussed in Sec. [V B,
the parameters choice

61 =S51(A), 6 =5(A) (F19)

indeed ensures that the MLE is globally unbiased and efficient
(except for vicinity of the upper bound A; < 1). However,
such parametrization is far from being practical. The ultimate
goal of imaging (microscopy) is to retrieve local information
about the object features from the results of available mea-
surements. Even allowing nonlinear reparametrization, one
would prefer to retain locality by defining the ith new param-
eter as a function of the ith initial parameter only:

6; = gi(6)).

For the considered two-parameter toy example, Egs. (F18) and
(F20) can be satisfied simultaneously if the equality

2hohy (hi — hg) =0

(F20)

(F21)

holds, which is possible only in trivial special cases: hy = 0,
or h; = 0 (no blurring), or Ay = h; [degenerate problem with
S1(A) = 5 (A)].

For the multiparametric problems, discussed in Sec. IV C,
an attempt to satisfy the conditions of linearity [Eq. (F17)] and
locality [Eq. (F20)] simultaneously leads to the same issue:
the number of additional constraints imposed on the imaging
system parameters Df}'l{) grows quadratically relatively to the
number of the object parameters A; (and 6;). Therefore, the
existence of the optimal parametrization allowing construc-
tion of the globally unbiased efficient estimator and satisfying
the locality restriction (F20) is limited to certain very special
cases.

The necessity to deal with parametrizations not allow-
ing construction of globally unbiased efficient estimators is
common for quantum multiparameter estimation problems
[62,80-82]. In the limit of a large number of detected events
(measurement repetitions), the MLE becomes asymptotically
unbiased (except for the parameters belonging to the border
of the physical region €2) and the CRB provides an accurate
estimate of error [62,80,81]. The effect manifests itself as a
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FIG. 13. Transmission-amplitude estimation for a uniform object
(single-parameter model): (a) estimation bias and (b) MSE. Solid red
lines show the behavior of the locally unbiased estimator A(Y,Ao)
defined by Eq. (F22) for ten values A, indicated by red dots. Dashed
red lines aggregate the bias and MSE for the estimators A(Y, Ag)
with the value A equal to the true value A. Other lines are taken
from Fig. 6. The regions I-III are defined according to the bias of
the estimators A(Y, Ay) with Ap = A (biased in I and III, locally
unbiased in II).

small bias in the region II in Fig. 6 even for the relatively
small mean number of detection events Nn" = 98.

If the number of detection events is not large, one can use
the locally unbiased estimator [56,62], defined by Eqgs. (F10)
and (F16), with the rough estimate of , being found by the
procedure outlined in Ref. [82]. For the one-parameter toy
example with the initial parametrization by the transmission
amplitude A, the resulting estimator takes the form

A . 1 Y
AY,Ap) = mln{l,Ao[l + E(S(Ao) - l>i|}, (F22)

where the upper bound A < 1 is taken into account explicitly.
The bias and MSE of that estimator for the parameters, used in
Fig. 6, are shown in Fig. 13. As expected, the constructed esti-
mator is locally unbiased and saturates the CRB in the region
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I, not including the vicinity of the boundary values A = 0 and
A = 1. The constraint, introduced by the function min{1, ...}
in Eq. (F22), leads to the estimation bias and decrease of MSE
relatively to the CRB in regions I and III. To account for
such effect, the FI modification and regularization approach
proposed in the current paper can be applied. It is interesting
to note that the bias in region I is still caused by the upper
bound A < 1: the locally unbiased estimator A(Y ,Ag), defined
by Eq. (F10), diverges for Ag — 0 [limg, o A(1,Ap) = o0],
while the constraint introduced in Eq. (F22) regularizes it at
the cost of additional bias.

APPENDIX G: CALCULATIONS
FOR THE ONE-PARAMETER PROBLEM
OF TRANSMISSION AMPLITUDE ESTIMATION

1. Optimal biased estimate

Optimizing the bias of a parameter estimate, one can
reduce the MSE of the parameter relatively to unbiased es-
timates [41,43,44,47]. For the model, described in Sec. IV A,
one can specify the cost function for the bias optimization as
the MSE averaged over the whole physical range of the true
parameter values A € [0, 1]:

1
@ = [ aABA@) - A7) @)
0
where A(Y) is the estimator to be optimized, and the expecta-
tion value over the signal realization is defined as

ELf(0N)] =) LY ISANSY).

Y=0

Substituting Eq. (G2) into Eq. (G1), one can obtain the
following expression for the cost function:

(G2)

o0

(A%)a = Z[(L(YIS(A)))AAZ(Y) — 2(L(Y|S(A)A)A(Y)
Y=0

+ (LY |S(A)A?))a], (G3)

where the brackets (---) denote averaging over A as in
Eq. (G1). The optimization is performed over the discrete set
of variables A(Y ), parametrized by an integer index Y':

9
AA(Y)

The minimum is reached when the following equation is
satisfied:

(AY, =0forallY =0,1,....

(G4)

(LYISA)AM _ o ALY ISA A
(L(Y]S(A)))a [y dAL(Y|S(A))

The result coincides with the mean a posteriori estimate de-
fined by Eq. (35).

AY) = (G5)

2. Mean squared error estimation

For numerical analysis of the estimation error in a one-
parameter case, one can start from constructing the mapping
dictionary Y +— A(Y) for the considered estimate. Equa-
tions (34) and (35) are to be used for MLE and Bayesian
estimates defined in the main text. Then, the MSE and the

bias are calculated as functions of the true parameter value
A as
MSE (A) = E[(A(Y) — A)’], Bias(A) = E[A(Y) — A],
(G6)

where the expectation value is defined by Eq. (G2).

Fl-based error evaluation includes application of stan-
dard CRB [Var(A) ~ 1/F], modified the CRB for a biased
estimator [41,43]

9 Bias (4)\° 1
A ) F
(G7)

MSE (A) = Var (A) + [Bias (A)]* ~ (1 +

+ [Bias (4)]%,

and the proposed approach with the corrected FI and the
standard CRB (MSE ~ 1/F).

3. Fisher information regularization for dark objects

Regularization of FI for small A is performed according to
Eq. (27) after substitution of Eq. (33):

. KAP"D
F(A) = max )
AT (14 |A — AIWVKA™ 2

where K = 4n>Nn". For A’ < A the derivative of the opti-
mized expression is positive, i.e., the optimal A" is not less
than A. For A’ > A the maximum of the optimized expression

is reached at

, n—1\""

==\"x
if A <A, Otherwise, the optimal value is A" = A and no
regularizing correction is applied.

(G8)

(G9)

4. Fisher information correction for the constraints

For the one-parameter model, considered in Sec. IV A, the
constraints to be taken into account by FI modification are 0 <
A < 1. The input FI is the result of regularization described
in Appendix G 3. To avoid confusion with the final result of
correction, we denote the input FI as F' [not F asin Eq. (G8)].
We follow the procedure from Sec. III B.

Both the FIM F and the transformation matrix 7 have
dimensions 1 x 1 in the considered case and represent
just scalars: T = «/F. The parameter transformation (for
the first iteration) is A’ = v/F(A — A©), where A is the
transmission amplitude value, for which FI is analyzed.
Parametrization of the constraints in the form a;A < b; is

ALl = a =1, b =1, (G10)
A>20 = -A<0 = a=-1, b =0. (G11)
The transformed parameters of the constraints are
Y R A S VRN ()
1= JF > o JE 0
(G12)

The local variable x, introduced in Appendix C, coincides
with the transformed parameter up to the sign: x = +A’,
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where the “4” and “—" signs correspond to the constraint in-
dices 1 and 0, respectively. The limiting values x(()J )= i/laj]
for the variable x are equal to

= VF1-A"), 1 = VFAQ. (G13)
The probabilities P; and Py of the constraints violation are

defined by Eq. (C2). For the model, discussed in Sec. IV A,
the following relations hold for those probabilities:

P1 < Pryeshold = 0.01 for A < 0.937, (G14)

and

Py < Pareshola for A > 0.242. (G15)

Therefore, for each A at most one of the constraints is active
and requires application of the correction procedure. Due to
the additivity of corrections applied to the same direction [53],
one can avoid multiple iterations and reduce the constraint
violation probability from its initial value to the target value
Piarger in One step.

The shrinking parameter & for the discussed correction step
is prescribed by Eq. (C7) with ij = Piarget- According to the
last step of the correction procedure described in Sec. III B,
the resulting corrected FI equals F = (1 + £)F, where F is
the input FI (namely, the regularization result).

APPENDIX H: VISUALIZATION OF FISHER
INFORMATION AND COVARIANCE MATRIX
FOR A TWO-PARAMETER MODEL

Since the FIM is a positive semidefinite matrix, it can serve
as a quadratic form defining an ellipse in a two-parameter case
0 = (01, 6,). The meaning of the ellipse is clearly seen from
Egs. (15) and (16) (see also Fig. 1 in Ref. [66] for illustration).

If the estimation results are scattered according to multivariate
normal distribution,

v detF 1
p@) = € exp| —=A0TFAO|, AO=0—6,,
2 2
(HD)
centered at some point 6y, the equation
AOTFAG =21n2 (H2)

defines the boundary between the regions with p(@) > 1/2
and p(#) < 1/2. Moreover, each region will, on average, con-
tain half of the sampled results:

1 1
/ d*0p(6) = — / d*re ™™/ = —.  (H3)
A0TFAI<21n2 21 Jir<i 2

Since the CRB with the standard FIM is valid for unbiased
estimates, it is reasonable to take 6 equal to the true value
of the parameters @ for visualization of the standard FIM.
The correction procedure (Sec. IIIB) shifts the probability
distribution. Therefore, 6y should be taken as the center g imax)
of the distribution after the last iteration (with the index i,x)
for visualization of the corrected FIM F'.

To visualize statistics of a set of randomly sampled points
(in two-dimensional space), one can assume a multivariate
normal distribution based on the sample mean (@) and covari-
ance C = Cov(#, 0):

1
p@) = —EA()TCIA()}, AO=0—(0).

(H4)

1
————ex
2mwA/detC P |:

The quadratic form of the distribution corresponds to the
ellipse defined by the equation

AOTCT'AO =21n2 (H5)

in the sense discussed above.
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